Lian, H. and Zheng, H. (2016). Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer’s disease. J. Neurochem., 136: 475-491.

Martini-Stoica, H., Xu, Y., Ballabio, A. and Zheng, H. (2016). The autophagy-lysosomal pathways in neurodegeneration: a TFEB perspective. Trends in Neurosciences, 39: 221-234.

Xu, Y., Martini-Stoica, H. and Zheng, H. (2016). A seeding based cellular assay of tauopathy. Mol. Neurodegen. 11:32.

Lian, H.*, Litvinchuk, A.*, Chiang A., Aithmitti, N., Jankowsky, J.L. and Zheng, H. (2016). Astrocyte-microglia crosstalk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J. Neurosci., 36(2): 577-89. *Equal contribution.

Justice, N.J., Huang, L., Tian, J.-B., Cole, A., Pruski, M., Hunt, A.J., Flores, R., Arenkiel, B.R. and Zheng, H. (2015). Post-traumatic stress disorder-like induction elevates Aβ levels which directly activates CRF neurons to exacerbate stress responses. J. Neurosci., 35(6): 2612-23.

Lian, H., Yang, L., Cole, A., Sun, L., Chiang, A., Flower, S.W., Shim, D.J., Rodriguez-Rivera, J., Taglialatela, G., Jankowsky, J.L., Lu, H.-C. and Zheng, H. (2015). NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron, 85(1): 101-115.

Wang, B., Wang, Z., Sun, L., Yang, L., Li, H., Cole, A., Rodriguez-Rivera, J., Lu, H.-C. and Zheng, H. (2014). The amyloid precursor protein controls adult hippocampal neurogenesis through GABAergic interneurons. J. Neurosci., 34(40): 13314-13325.

Li, H., Guo, Q., Inoue, T., Polito, V.A., Tabuchi, K., Hammer, R.E., Pautler, R.G., Taffet, G.E. and Zheng, H. (2014). Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol. Neurodegen., 9:28.

Polito, V.*, Li, H.*, Martini-Stoica, H.*, Wang, B.,Yang, L., Xu, Y., Swartzlander, D., Palmieri, M., di Ronza, R., Li, V. M.-Y., Sardiello, M. Ballabio, A., and Zheng, H. (2014). Selective clearance of aberrant Tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med., 6(9): 1142-1160. *Equal contribution.

Guo, Q., Li, H., Cole, A.L., Hur, J.-Y., Li, Y. and Zheng, H. (2013). Modeling Alzheimer’s disease in mouse without mutant protein overexpression: Cooperative and independent effects of Aβ and Tau. PLoS ONE, 8(1): e80706.

Guo, Q., Li, H., Gaddam, S.S.K., Justice, N.J., Robertson, C.S., and Zheng, H. (2012). Amyloid precursor protein revisited: Neuronal-specific expression and the highly stable nature of soluble derivatives. J. Biol. Chem. 287(4): 2437-45.

Guo, Q., Wang, Z., Li, H., Wiese, M. and Zheng, H. (2012). APP physiological and pathophysiological functions: Insights from animal models. Cell Research, 22: 78-87.

Wang, B., Harrison, W., Overbeek, P. and Zheng, H. (2011). Transposon mutagenesis with coat color genotyping identifies an essential role of SKOR2 in Sonic Hedgehog signaling and cerebellum development. Development, 138: 4487-4497.

Li, H.*, Wang, B.*, Wang, Z., Guo, Q., Tabuchi, K., Hammer, R., Sudhof, T., and Zheng, H. (2010). Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP. Proc. Natl. Acad. Sci. USA, 107: 17362-17367. *Equal contribution.

Li, H., Wang, Z., Wang, B., Guo, Q., Dolios, G., Tabuchi, K., Hammer, R.E., Sudhof, T.C., Wang, R. and Zheng, H. (2010). Genetic dissection of the amyloid precursor protein in developmental function and amyloid pathogenesis. J. Biol. Chem., 285: 30598-30605.

Peethumnongsin, E., Yang, L., Kallhoff-Munoz, V., Hu, L., Takashima, A., Pautler, R.G., and Zheng, H. (2010). Convergence of presenilin- and tau-mediated pathways on axonal trafficking and neuronal function. J. Neurosci., 30: 13409-13418.

Yang, L., Wang, Z., Wang, B., Justice, N., and Zheng, H.  (2009). Amyloid precursor protein regulates Cav1.2 L-type calcium channel levels and function to influence GABAergic short-term plasticity.  J. Neurosci., 29: 15660-15668.

Wang, Z., Wang, B., Yang, L., Guo, Q., Aithmitti, N., Songyang, Z. and Zheng, H.  (2009). Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J. Neurosci., 29:10788-10801.

Wang, B., Yang, L., Wang, Z. and Zheng, H. (2007). Amyolid precursor protein mediates presynaptic localization and activity of the high-affinity choline transporter. Proc. Natl. Acad. Sci. USA, 104: 14140-14145.

Wang, R., Wang, B., He, W., and Zheng, H. (2006). Wild-type presenilin protects against Alzheimer’s disease mutation-induced amyloid pathology. J. Biol. Chem., 281: 15330-15336.

Deng, Y., Tarassishin, L., Kallhoff, V., Peethumnongsin, E., Wu, L., Li, Y. and Zheng, H. (2006). Deletion of presenilin 1 hydrophilic loop sequence leads to impaired β-secretase activity and exacerbated amyloid pathology. J. Neurosci. 26: 3845-3854.

Wang, R., Tang, P., Wang, P., Boissy, R.E. and Zheng, H. (2006). Regulation of tyrosinase trafficking and processing by presenilins: Partial loss of function by familial Alzheimer’s disease mutation. Proc. Natl. Acad. Sci. USA 103: 353-358.

Wang, P., Yang, G., Mosier, D.R., Chang, P., Zaidi, T., Gong, Y.-D., Zhao, N.-M., Dominguez, B., Lee, K.-F., Gan, W.-B. and Zheng, H. (2005). Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-like protein 2. J. Neurosci. 25: 1219-1225.

Wang, P., Pereira, F. A., Beasley, D., and Zheng, H. (2003). Presenilins are required for the formation of comma- and S-shaped bodies during nephrogenesis. Development 130: 5019-5029.

Xia, X., Wang, P., Sun, X., Soriano, S., Shum, W.-K., Trumbauer, M.E., Takashima, A., Koo, E.H., and Zheng, H. (2002). The aspartate-257 of presenilin 1 is indispensable for mouse development and production of β-amyloid peptides through β-catenin independent mechanisms. Proc. Natl. Acad. Sci. USA 99: 8760-8765.

Xia, X., Qian, S., Soriano, S., Wu, Y., Fletcher, A., Wang, X.-J., Koo, E.H., Wu, X., and Zheng, H. (2001). Loss of presenilin 1 is associated with enhanced β-catenin signaling and skin tumorigenesis. Proc. Natl. Acad. Sci. USA 98: 10863-10868.