Positions
- Assistant Professor
-
Huffington Center On Aging
Baylor College of Medicine
Houston, TX US
- Assistant Professor
-
Molecular and Human Genetics
Baylor College of Medicine
- Member
-
Dan L Duncan Comprehensive Cancer Center
Baylor College of Medicine
Houston, Texas United States
- Faculty Senator
-
Baylor College of Medicine
Education
- PhD from Southern Illinois University
- 01/2006 - Carbondale, Illinois United States
- Post-Doctoral Fellowship at University of Pennsylvania
- 01/2011 - Philadelphia, Pennsylvania United States
Professional Interests
- Our lab uses yeast replicative aging as a model, together with human primary cell lines and adult stem cells, to study evolutionarily conserved epigenetic mechanisms during aging and development of age-related cancers
Professional Statement
Our laboratory is studying epigenetic regulation mechanisms during aging and oncogenesis. Aging is the single greatest risk factor for diseases that are principal causes of mortality, including cardiovascular diseases, diabetes, neurodegenerative diseases and infectious diseases. A breakthrough in aging research resulting in even a moderate retardation of aging and a delay in the onset of age-associated diseases, such as cancer, would have tremendous impact on the quality of life for the general public. However, aging and how it contributes to the development of age-associated diseases remain poorly understood. Epigenetic changes, including histone modifications and proteome, are critical regulatory mechanisms, involved in all developmental processes including aging and age-associated diseases. The goal of our research is to discover novel chromatin and proteomics regulation pathways that modulate longevity and regulate the development of age-associated diseases, such as cancer. This mechanistic study will form the basis in future development of therapeutic target for treating age-associated diseases and improving human health span.Epigenetics generally includes all cellular alterations beyond genetic changes that result in observable phenotypes. In practice, epigenetics usually means persistent covalent alterations to chromatin, such as histone acetylation and DNA methylation. Recent proteomics and acetylomics studies have broadened our views of epigenetics and many more enzymes and factors can carry modifications that confer epigenetic phenomena. It is very clear now epigenetics represents a complex regulation network on top of the genetic code. In medicine, epigenetics holds a very promising future because interventions in epigenetics can alter genetic outcomes and the strength of such intervention can be fine-tuned.
Replicative aging of budding yeast has been a powerful system for aging studies, providing fundamental genetic and molecular insights into both cellular and organismal aging. Studies of chromatin biology have also immensely benefited from the yeast model, since it provides a uniquely tractable system for such studies and also because many molecular mechanisms of chromatin are highly conserved from yeast to complex eukaryotes. We use the budding yeast replicative aging as a model to study how epigenetic regulations can modulate longevity. In the past, we have shown that elevated levels of histone H4K16 acetylation near telomeres is a hallmark of old cells. It is regulated by a pair of enzymes Sir2 and Sas2 in yeast and is a causal factor in determining lifespan. Furthermore, through a series of unbiased lifespan screens and other high throughput systems biology approaches, we have identified more chromatin regulation pathways that seem to also alter lifespan. Such pathways include those involved in transcription regulation, DNA damage response, cellular stress response, chromatin compaction and heterochromatin formation, etc. Further studies are currently carried out in our lab to elucidate the molecular mechanisms and their causal relationship to aging.
Stem cell aging and cellular senescence are important processes that contribute to the aging pathology and development of cancer. As a complement to our yeast replicative aging model, we are using mammalian primary cell lines and adult stem cells to study whether and how chromatin and epigenetic regulation pathways identified in yeast are involved in stem cell aging and cellular senescence. Changes in aging and senescence phenotype are investigated by knocking down conserved enzymes. Epigenetic features are tracked during senescence and compared between young and old stem cells. Studying mechanistic conservation using mammalian cell models will provide valuable insights into mammalian aging and conditions predisposed to cancer development.
Websites
Selected Publications
- Qin J, Rajaratnam R, Feng L, Salami J, Barber-Rotenberg J, Domsic J, Reyes-Uribe P, Liu H, Dang W, Berger SL, Villanueva J, Meggers E, Marmorstein R "Development of Organometallic S6K1 Inhibitors." J Med Chem. 2015 58 (1): 305-14. Pubmed PMID: 25356520
- Jo MC, Liu W, Dang W, Qin L "High-throughput analysis of yeast replicative aging using a novel microfluidic system." Proc Natl Acad Sci U S A. 2015 112 (30): 9364-9. Pubmed PMID: 26170317
- Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, Liu W, Cao K, Perry R, Lee JY, Wagner J, Gregory BD, Kaeberlein M, Kennedy BK, Boeke J, and Berger SL "H3K36 methylation promotes longevity by enhancing transcription fidelity." Genes Dev. 2015 29 (13): 1362-76. Pubmed PMID: 26159996
- Dang W, Sutphin GL, Dorsey JA, Otte GL, Cao K, Perry RM, Wanat JJ, Saviolaki D, Murakami CJ, Tsuchiyama S, Robison B, Gregory BD, Vermeulen M, Shiekhattar R, Johnson FB, Kennedy BK, Kaeberlein M, Berger SL "Inactivation of Yeast Isw2 Chromatin Remodeling Enzyme Mimics Longevity Effect of Calorie Restriction via Induction of Genotoxic Stress Response." Cell Metab. 2014 May 7; 6 (19): 952-66. Pubmed PMID: 24814484
- McCauley BS, Dang W "Histone methylation and aging: Lessons learned from model systems." Biochim Biophys Acta. 2014 1839 (12): 1454-62. Pubmed PMID: 24859460
- McCormick MA, Mason AG, Guyenet SJ, Dang W, Garza RM, Ting MK, Moller RM, Berger SL, Kaeberlein M, Pillus L, La Spada AR, Kennedy BK "The SAGA Histone Deubiquitinase Module Controls Yeast Replicative Lifespan via Sir2 Interaction." Cell Rep. 2014 July 17; 2 (8): 477-86. Pubmed PMID: 25043177
- Dang W "The controversial world of sirtuins." Drug Discovery Today: Technologies. 2014 12 : e9-12. Pubmed PMID: 25027380
- Tsuchiyama S, Kwan E, Dang W, Bedalov A, Kennedy BK "Sirtuins in yeast: phenotypes and tools." Methods Mol Biol. 2013 (1077): 11-37. Pubmed PMID: 24014397
- Yuan H, Rossetto D, Mellert H, Dang W, Srinivasan M, Johnson J, Hodawadekar S, Ding EC, Speicher K, Abshiru N, Perry R, Wu J, Yang C, Zheng YG, Speicher DW, Thibault P, Verreault A, Johnson FB, Berger SL, Sternglanz R, McMahon SB, Côté J, Marmorstein R "MYST protein acetyltransferase activity requires active site lysine autoacetylation." EMBO J. 2012 31 (1): 58-70. Pubmed PMID: 22020126
- Edwards CR, Dang W, Berger SL "Histone H4 lysine 20 of Saccharomyces cerevisiae is monomethylated and functions in subtelomeric silencing." Biochemistry. 2011 50 (48): 10473-83.. Pubmed PMID: 21985125
- Kozak ML, Chavez A, Dang W, Berger SL, Ashok A, Guo X, Johnson FB "Inactivation of the Sas2 histone acetyltransferase delays senescence driven by telomere dysfunction." EMBO J. 2010 29 (1): 158-70. Pubmed PMID: 19875981
- Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL "Histone H4 lysine 16 acetylation regulates cellular lifespan." Nature. 2009 459 (7248): 802-7. Pubmed PMID: 19516333
- Sanders BD, Jackson B, Brent M, Taylor AM, Dang W, Berger SL, Schreiber SL, Howitz K, Marmorstein R "Identification and characterization of novel sirtuin inhibitor scaffolds." Bioorg Med Chem. 2009 17 (19): 7031-41. Pubmed PMID: 19734050
- Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, Tao SC, Qian J, Zhao Y, Boeke JD, Berger SL, Zhu H "Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis." Cell. 2009 136 (6): 1073-84. Pubmed PMID: 19303850
- Dang W, Bartholomew B "Domain architecture of the catalytic subunit in the ISW2-nucleosome complex." Mol Cell Biol. 2007 27 (23): 8306-17. Pubmed PMID: 17908792
- Dang W, Kagalwala MN, Bartholomew B "The Dpb4 subunit of ISW2 is anchored to extranucleosomal DNA." J Biol Chem. 2007 282 (27): 19418-25. Pubmed PMID: 17491017
- Dang W, Kagalwala MN, Bartholomew B "Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA." Mol Cell Biol. 2006 26 (20): 7388-96. Pubmed PMID: 17015471
- Kagalwala MN, Glaus BJ, Dang W, Zofall M, and Bartholomew B "Topography of the ISW2-Nucleosome Complex: Insights into Nucleosome Spacing and Chromatin Remodeling." EMBO J. 2004 23 : 2092-104. Pubmed PMID: 15131696
- Liu Y, Zheng J, Dang W, Ren H, Yu M, and Ru B "The Study of Direct ELISA and Competitive ELISA for Rabbit Metallothionein: Correlation of Induction with Zinc." Analusis. 2000 28 : 361-6.
Funding
- CPRIT Scholar for Cancer Research - #R1306 Grant funding from Cancer Prevention Research Institute of Texas (CPRIT)
- Regulation of longevity through maintenance of transcription fidelity - #R01AG052507 Grant funding from National Institute on Aging (NIA)
- Grant Grant funding from Ted Nash Long Life Foundation
Log In to edit your profile