Lilei Zhang, M.D., Ph.D.
Picture

Positions
- Assistant Professor
-
Molecular and Human Genetics
Baylor College of Medicine
Houston, TX US
Addresses
- BCM-MD Anderson Hall (Office)
-
Room: BCMA-441E
Houston, TX 77030
United States
(713) 798-2285
Education
- MD from Peking University Health Science Center
- 07/2001 - Beijing, China
- PhD from Johns Hopkins University
- 05/2006 - Baltimore, Maryland
- Human Genetics and Molecular Biology
- Postdoctoral Fellowship at Johns Hopkins University
- 05/2008 - Baltimore, Maryland
- Internship at University Hospitals Case Medical Center
- 06/2009 - Cleveland, Ohio
- Internal Medicine
- Residency at University Hospitals Case Medical Center
- 06/2012 - Cleveland, Ohio
- Internal Medicine
- Fellowship at University Hospital Case Medical Center
- 07/2013 - Cleveland, Ohio
- Medical Genetics
- Postdoctoral Fellowship at Case Western Reserve University
- 08/2016 - Cleveland, Ohio
Certifications
- Texas Medical Board
- Ohio Medical Board
- American Board of Medical Genetics and Genomics
- American Board of Internal Medicine
Professional Interests
- Genetic and Epigenetic regulation of heart failure and cardiomyopathies
- Pathogenesis of inherited cardiomyopathy
Professional Statement
The overarching theme of our laboratory is to understand the genomic and epigenomic regulation of the cardiovascular system in health and in disease with an emphasis on heart failure and cardiomyopathies. Heart failure has been associated with a stereotypical gene expression program controlled by a series of transacting factors and chromatin state changes and is the result of a series of maladaptive remodeling of the myocardium. The aberrant activation of key transcription factors such as MEF2, NFAT, NF-kB, GATA4, and C-MYC have been shown to play critical roles in this program switching. However, the precise molecular mechanisms that signal these transcription factors and trigger pathologic gene expression in the heart remain poorly understood and thus an effective way to counter act is unavailable. Current state-of-the-art therapy aims to reduce the neurohormonal stress and improves hemodynamics, however, the already committed gene program cannot be reversed.REV-ERBa is a nuclear receptor and transcriptional repressor in the automatic core clock machinery. We have discovered that REV-ERBa binds near aberrantly activated key transcription factors, prevents activation of their targets and protects the myocardium from pathological remodeling in vitro and in vivo in both neurohormonal and hemodynamics stress models. This finding led to a drastically different model from the currently held hypothesis, instead we propose the aberrant gene expression program is the cause rather than the result of pathological remodeling. Also, the widely accepted early phase “adaptive” remodeling is not required to preserve normal cardiac function and actually may contribute to the pathological switch of gene expression program. This finding also offers a pathway for the development of novel therapies for heart failure.
Another focus of our laboratory is to study patient-derived induced pluripotent stem cell differentiated cardiomyocytes from patients with inherited cardiomyopathies. Using a comprehensive panel of phenotyping tools (biophysics, electrophysiology, energetics, and imaging) combined with genomics tools, we aim to establish a platform to diagnose the molecular defects, characterize the pathogenic pathways and develop targeted therapy
Our laboratory is also interested in understanding the genomic and epigenomic regulation of the adaptive gene regulatory programs in the cardiovascular system, such as circadian rhythm, exercise and fasting. Using RNAseq, we are the first to demonstrate that there is a temporal and functional organization of oscillating transcripts, with a distinct energy-regulatory phase (coinciding with active phase) and a remodeling and repair phase (coinciding with resting phase) in a 24-hour period. We identified that a local transcription factor KLF15 governs 75% of the oscillating transcripts and establishes this bimodal landscape by both directly activating catabolic targets during the active phase and repressing aberrant oscillation via recruiting circadian repressor REV-ERBa and its cofactor NCOR. These findings demonstrated a novel molecular mechanistic principle of “positive” and “negative” regulation in circadian gene regulation and provided a framework to explain the longstanding observation that the same molecular clock gives rise to different sets of oscillating genes in different tissues.
Selected Publications
- Zhang L*, Zhang R, Tien CL, Chan RE, Sugi K, Fu C, Griffin AC, Shen Y, Burris TP, Liao X, Jain MK* "REV-ERBα Ameliorates Heart Failure Through Transcription Repression.." JCI Insight. 2017 2 (17): e95177. Pubmed PMID: 28878135
- Hsieh PN, Zhang L, Jain MK "Coordination of cardiac rhythmic output and circadian metabolic regulation in the heart.." Cell Mol Life Sci.. 2017 75 (3): 403-416. Pubmed PMID: 28825119
- Zhang L, Jain MK "Beating against the clock." PNAS. 2016 March 8; 113 : 2558-9. Pubmed PMID: 26908876
- Zhang L, Prosdocimo DA, Bai X, Campbell F, Liao X, Coller J, Jain MK "KLF15 Establishes the Landscape of Circadian Expression in the Heart." Cell Rep. 2015 13 : 2368-75. Pubmed PMID: 26686628
- Zhang L, Wang T, Valle D "Reduced PLP2 expression increases ER stress-induced neuronal apoptosis and risk for adverse neurological outcomes after hypoxia ischemia injury." Hum Mol Genet. 2015 December 20; 24 : 7221-6. Pubmed PMID: 26512060
- Han S, Zhang R, Jain R, Shi H, Zhang L, Zhou G, Sangwung P, Tugal D, Atkins GB, Prosdocimo DA, Lu Y, Han X, Tso P, Liao X, Epstein JA, Jain MK "Circadian control of bile acid synthesis by a KLF15-Fgf15 axis." Nat Commun. 2015 June 4; 6 : 7231. Pubmed PMID: 26040986
- Liao X, Zhang R, Lu Y, Prosdocimo DA, Sangwung P, Zhang L, Zhou G, Anand P, Lai L, Leone TC, Fujioka H, Ye F, Rosca MG, Hoppel CL, Schulze PC, Abel ED, Stamler JS, Kelly DP, Jain MK "Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis." J Clin Invest. 2015 September ; 125 : 3461-76. Pubmed PMID: 26241060
- Prosdocimo DA, John JE, Zhang L, Efraim ES, Zhang R, Liao X, Jain MK "KLF15 and PPARα Cooperate to Regulate Cardiomyocyte Lipid Gene Expression and Oxidation." PPAR Res. 2015 2015 : 201625. Pubmed PMID: 25815008
- Liu Y, Pham X, Zhang L, Chen PL, Burzynski G, McGaughey DM, He S, McGrath JA, Wolyniec P, Fallin MD, Pierce MS, McCallion AS, Pulver AE, Avramopoulos D, Valle D "Functional variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR signaling." G3 (Bethesda). 2014 November 20; 5 : 61-72. Pubmed PMID: 25416705
- Zhang L, Jie C, Obie C, Abidi F, Schwartz CE, Stevenson RE, Valle D, Wang T "X chromosome cDNA microarray screening identifies a functional PLP2 promoter polymorphism enriched in patients with X-linked mental retardation." Genome Res. 2007 May ; 17 : 641-8. Pubmed PMID: 17416750
- Zhang L, Wang T, Wright AF, Suri M, Schwartz CE, Stevenson RE, Valle D "A microdeletion in Xp11.3 accounts for co-segregation of retinitis pigmentosa and mental retardation in a large kindred." Am J Med Genet A. 2006 February ; 140 : 349-357. Pubmed PMID: 16419135
- Zhang L, Sabeh MK, Jain MK "Circadian rhythm and cardiovascular disorders." Chronophysiology and Therapy. 2014 July ; 2014 : 27-40.
- Le Li , Hui Li , Chih-Liang Tien , Mukesh K. Jain , Lilei Zhang "Kruppel-Like Factor 15 Regulates the Circadian Susceptibility to Ischemia Reperfusion Injury in the Heart." Circulation. 2020 April 27; 141 (17): 1427-1429. Pubmed PMID: 32339045
Log In to edit your profile