

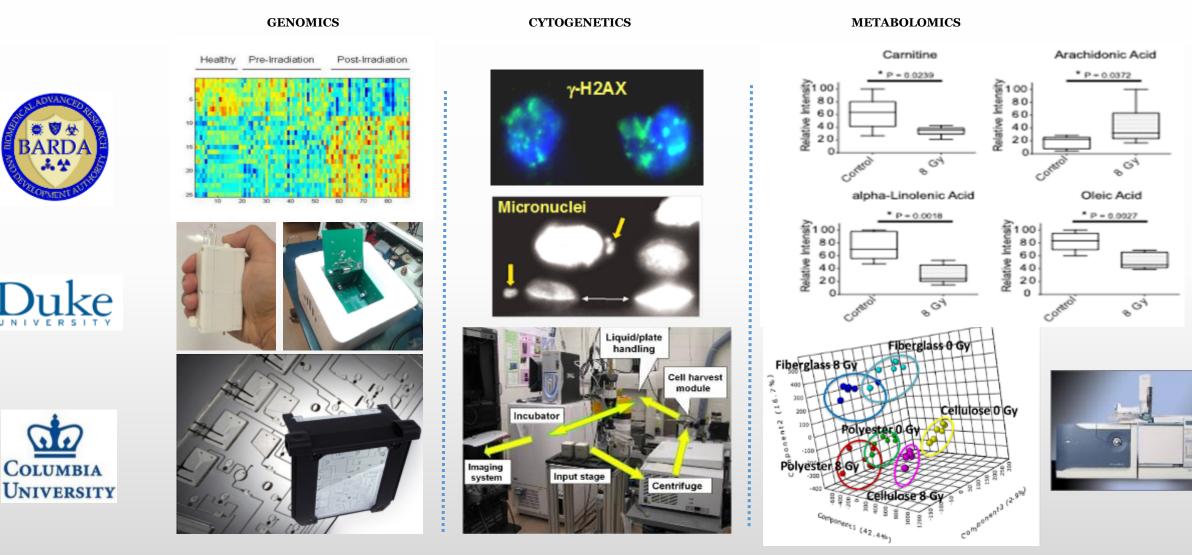
THE NEW TEST STRIP

Frederic Zenhausern, Ph.D., MBA, FNAI, FAIMBE Director and professor

DISCLOSURES

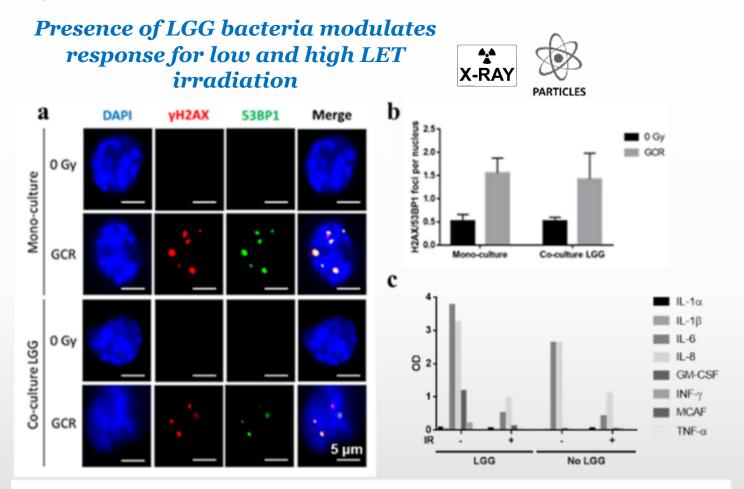
Dr. Zenhausern disclosed that he is a Consultant for Wren Laboratories LLC and founder of Whitespace Enterprise Corporation

NASA New Era: Travel Beyond Low Earth Orbit


ISS Distance from Earth: 230 Miles Moon Distance from Earth: 238,900 Miles Mars Distance from Earth: ~140,000,000 Miles

NASA Twins Study Scott and Mark Kelly 12 months mission

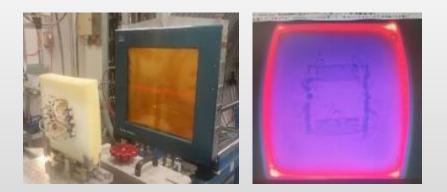
Assay Platforms for Radiation Exposure


NIAID CMCR 5U19AI067773-13

Blood, Saliva, urine...

BARDA HHS0100201000001C

Microbiome & GCR Interactions


THE UNIVERSI OF ARIZONA

> Figure 1. Preliminary data obtained at NSRL with HuMiX platform. Representative picture of Fhs 74 Int cells seeded on membrane in presence or not of LGG and exposed 7 days later to GCRSim (a). Quantification of γ -H2AX/53BP1 foci (n=100) (b). Profile of 8-cytokines mix from supernatant (c).

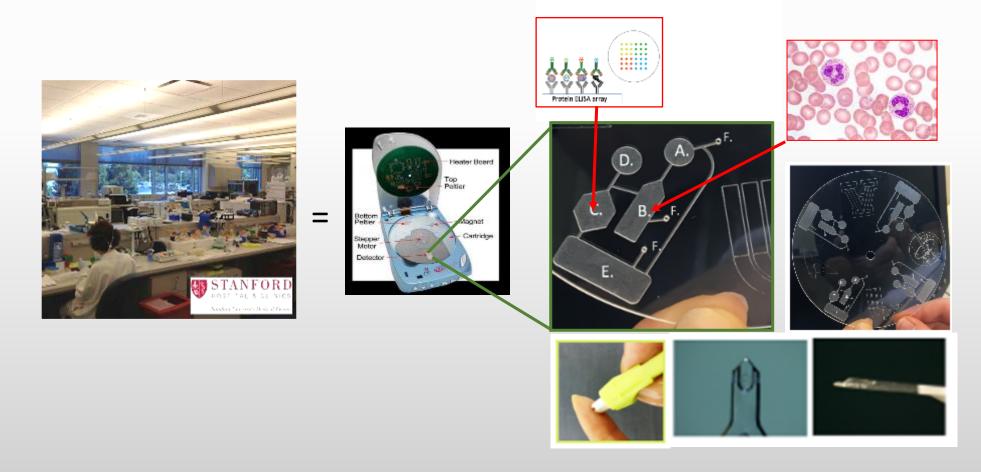
HuMiX device in NSRL beam

GCR = 0.75 Gy GCR H⁺, ⁴He, ¹⁶O, ²⁸Si, ⁵⁶Fe LGG = Lactobacillus rhamnosus

Challenges with Molecular Diagnostics Testing

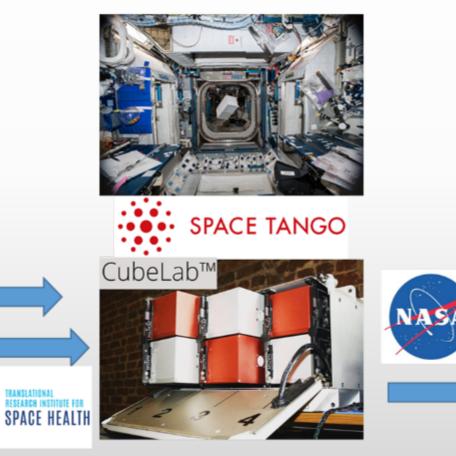
• Molecular tests do NOT translate readily into mobile point-of-care diagnostics

Multiplex Throughput Cost


Single-plex One sample, low cost

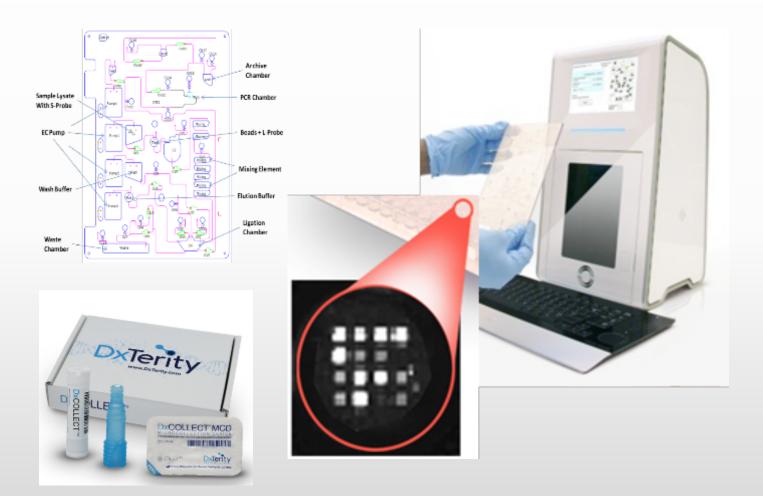
Handheld Medical Diagnostic Device for Harsh Environments

Develop a prototype triage device that is inexpensive, rapid, easy-to-use and capable of blood cell differential counts and protein profiling for characterizing biological responses of radiation exposure.



Logistics, Validation and Deployment

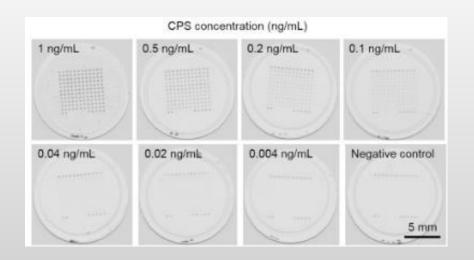
Microgravity could offer new fluid behavior...

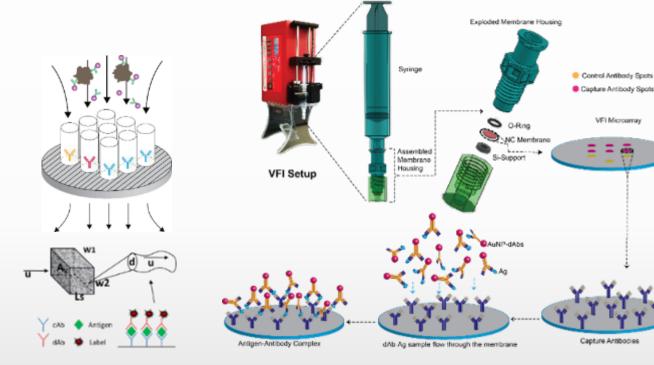


The Current State of the Art: Radiation-based gene expression

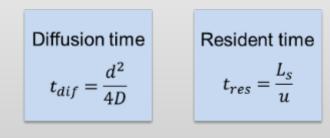
- 2019 CE approved
- The first gene expression biodosimetry test
- DNA/RNA based technology
- Laboratory platform

Defense Threat Reduction Agency


⁶ First...Vertical Flow Immunoassay (VFI) for the detection of *Burkholderia pseudomallei* surface capsular polysaccharide...

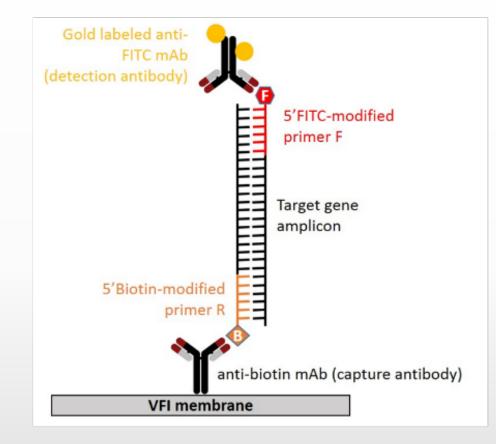

100000	Contents lists available at ScienceDirect	莱
	Talanta	talanta
ELSEVIER	journal homepage: www.elsevier.com/locate/talanta	

Paper-based Vertical Flow Immunoassay (VFI) for detection of bio-threat pathogens

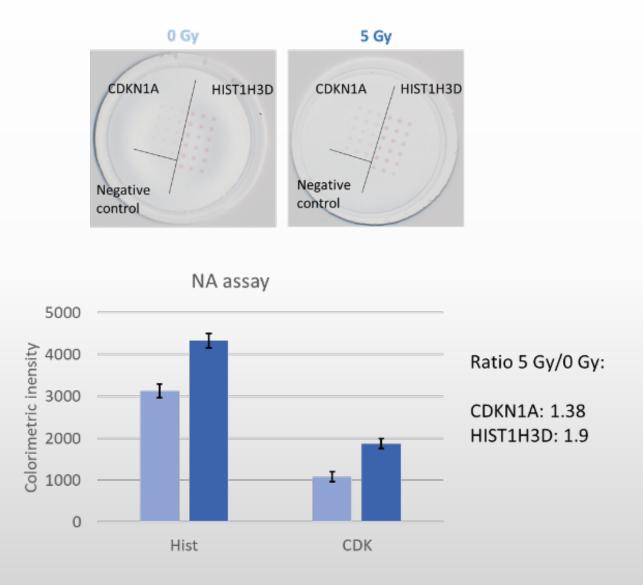

Peng Chen^a, Marcellene Gates-Hollingsworth^b, Sujata Pandit^b, Anson Park^c, Douglas Montgomery^c, David AuCoin^b, Jian Gu^{a,*}, Frederic Zenhausern^{a,*}

^a Center for Applied NonoHoucience & Medicine, College of Medicine – Phoente, University of Arizone, Phoenix, AZ, USA ^b Department of Microbiology and Instantology, University of Neucla School of Medicine, Reno, NV, USA ^c School of Computing, Informatica and Decision Systems Engineering, Arizone State University, Temps, AZ, USA

u: flow speed *L_s*: sensing length *d*: membrane pore size *D*: diffusivity

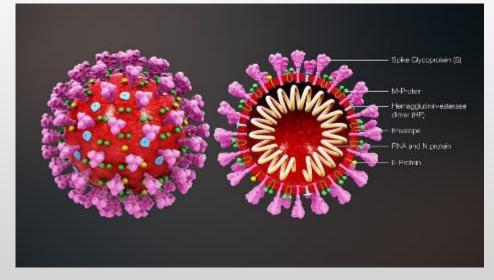


- Nanopore allows better target
 capture under high flow speed
- VFI short flow path: 100 µm
 vs. 40 mm in LFI

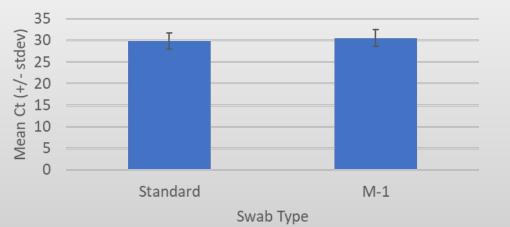


SPACE HEALTH

...and then adapted for the detection of biodosimetry genes



TRISH# SYN0003 & NNX16A069A



M-1 Swabs Compared To Standard (p=0.11)

Many Challenges for Countermeasures:

- Shortage of Supplies
- Sensitive tests
- At home simple test
- Therapeutics
- Vaccine

Saliva PCR test FDA EUA 200CT20

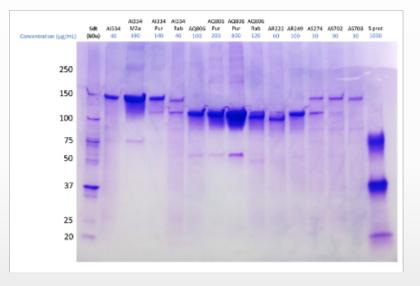
Recombinant Antibodies: SARS-CoV-2-S protein (Uniprot DB)

ABCD	Ab Name	PMID/DOI	PDB	Epitope	Comments
AI334	CR3022	16796401, 32245784	6W41	\$1 (356-504)	Isolated from CoV-1 patient; defined 3D structure
AQ806	VHH-72	32375025	6WAQ	S1 (RBD/355-366)	Nanobody raised against CoV-1; defined 3D structure
AR209-AR271	Sb#XXX (63 Abs)	10.1101/2020.04.16.045419		S1 (RBD/330-526)	Nanobodies (top-performers: AR222, AR223, AR224, AR248, AR249, AR269)
AS273 AS274	B38 H4	32404477	7BZ5	\$1 (RBD)	Isolated from CoV-2 patient; defined 3D structure
AS682-AS725	(44 Abs)	32561270	6XE1		Isolated from CoV-2 patient Only 2 neutralizing and targeting RBD (AS682 and AS708); defined 3D structure
AS739	S309	32422645	6WPS	S1 (non-RBD)	Isolated from CoV-1 patient; defined 3D structure
AS740 AS862	CB6 CA1	32454512	7C01	\$1 (RBD)	Isolated from CoV-2 patient; defined 3D structure; prevents infections in monkeys
AT085	P2B-2F6	32454513	7BWJ	\$1 (RBD)	Isolated from CoV-2 patient; defined 3D structure
AT086	NbTy1	10.1101/2020.06.02.130161		\$1 (RBD)	Nanobody; defined 3D structure (no PDB)
AT460-AT542 AT961-AT972	(95 Abs)	32555388 10.1101/2020.05.28.121533	N.A.	\$1 (RBD)	Isolated from CoV-2 patients; defined 3D structure for AT483
AT693	BD23	32425270	7BYR	\$1 (RBD)	Isolated from CoV-2 patient; defined 3D structure
AT798 AT799	W23UACh W25UACh	10.1101/2020.06.09.137935			Nanobodies
AT800-AT828	(29 Abs)	10.1101/2020.06.09.143438	7C8V, 7C8W, 7CAN	\$1 (RBD)	Nanobodies; 3 with defined 3D structure (AT801, AT817, AT828)
AT868-AT876	(9 Abs)	32540901	6XDG	\$1 (RBD)	Regeneron Abs; REGN10933+REGN10987 (AT870+AT869) in clinical trials
AT877-AT958	(82 Abs)	32540902			Isolated from CoV-2 patients (AT892 and AT916 best neutralizers)
AT959 AT960 AU703-AU733	CC12.1 CC12.3 (+31 Abs)	32540903	6XC2 6XC4	\$1 (RBD)	Isolated from CoV-2 patient; defined 3D structure
AT973-AU078	(85 Abs)	10.1101/2020.06.23.165415			Nanobodies; 1 with cryo-EM structure (Sb23/AU015)
AU079-AU113	(35 Abs)	32571838	7C2L		Isolated from CoV-2 patients; only 3 neutralizing (4A8/AU079 S1-NTD, 3H3/AU084 S2, 1D2/AU088 S1-RBD); defined 3D structure for 4A8
AU180	EY6A	32737466	6ZER	\$1 (RBD)	Isolated from CoV-2 patient; defined 3D structure
AU182-AU207	(26 Abs)	10.4049/jimmunol.2000583		\$1 (RBD)	Raised in mouse against CoV-2, 5 neutralizing (AU197/2B04 with therapeutic potential)
AU260-AU300	(40 Abs)	10.1101/2020.05.22.111005		\$1 (RBD)	Isolated from CoV-2 patients; best neutralizers COV2-2130/AU270, COV2-2165/AU271, and COV2-2196/AU299
AU422-AU449	(28 Abs)	32673567		\$1 (RBD)	Neutralizing Abs isolated from CoV-2 patients
AU450-AU540	(91 Abs)	32651581		NTD, RBD	Isolated from CoV-2 patients; best neutralizers COV2-2678/AU520 and COV2-2514 (seq not released)
AU605-AU617	(13 Abs)	10.1101/2020.07.24.219857		\$1 (RBD)	Nanobodies; best blocking Ab NIH-CoVnb-112/AU616
AU734	Fab 2-4	32698192	6XEY	\$1 (RBD)	Isolated from CoV-2 patient; defined 3D structure
AU753	Mab362	32511396		S1 (RBD/ACE2)	Neutralizing Ab, hybridoma raised against CoV-1
AV125	H014	32703908	7CAH	\$1 (RBD)	NAb raised against CoV-2; defined 3D structure; with therapeutic potential

The VFI in response to COVID-19 crisis for the detection of both S-protein and N-gene: a proof-of-concept

1- Development of anti S-protein antibodies

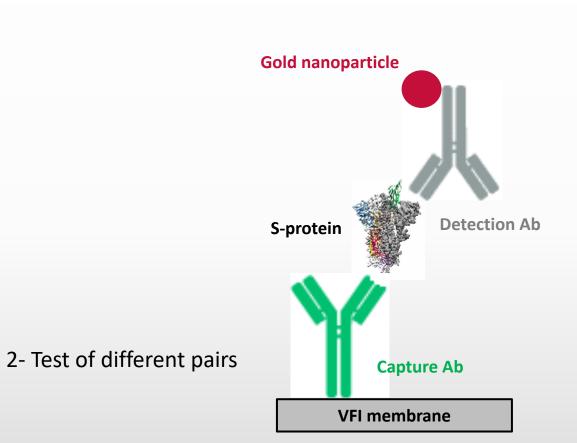
No	Primary Antibodies
1	Al334-mouse
2	Al334-rabbit
3	AQ806-mouse
4	AQ806-rabbit
5	AR222
6	AR249
7	AS274
8	AS702
9	AS708


Previously characterized by direct ELISA:

AI334 & AQ806 Antibody Reports, 2020, vol. 3, e186

AR222, AR249, AS274, AS702 & AS708 Antibody Reports, 2020, vol. 3, e220

Cryo-EM structure of the 2019-nCoV spike protein ^{Wrapp et al. Science, 2020}



Capture Ab	Detection Ab	Signal
AI334-rabbit	AQ806	No signal
AI334-rabbit	AR222	No signal
AI334-rabbit	AR249	No signal
AI334-rabbit	AS702	No signal
AI334-rabbit	AS708	No signal
AI334-rabbit	AS274	No signal
AQ806-rabbit	AI334	No signal
AQ806-rabbit	AR222	Faint
AQ806-rabbit	AR249	Faint
AQ806-rabbit	AS702	Faint
AQ806-rabbit	AS708	Faint
AQ806-rabbit	AS274	Faint
AI334-mouse	AQ806-rabbit	No signal
AR222	AQ806-rabbit	Good
AR249	AQ806-rabbit	Very good
AS702	AQ806-rabbit	Very good
AS708	AQ806-rabbit	Good
AS274	AQ806-rabbit	Good
AQ806-mouse	Al334-rabbit	Very good
AR222	Al334-rabbit	Good
AR249	AI334-rabbit	Very good
AS702	02 AI334-rabbit	
AS708	AI334-rabbit	Good
AS274	AI334-rabbit	Good

Development of Sandwich ELISA

Capture Ab	Detection Ab	Signal
AI334-rabbit	AQ806	No signal
Al334-rabbit	AR222	No signal
Al334-rabbit	AR249	No signal
Al334-rabbit	AS702	No signal
AI334-rabbit	AS708	No signal
AI334-rabbit	AS274	No signal
AQ806-rabbit	AI334	No signal
AQ806-rabbit	AR222	Faint
AQ806-rabbit	AR249	Faint
AQ806-rabbit	AS702	Faint
AQ806-rabbit	AS708	Faint
AQ806-rabbit	AS274	Faint
AI334-mouse	AQ806-rabbit	No signal
AR222	AQ806-rabbit	Good
AR249	AQ806-rabbit	Very good
AS702	AQ806-rabbit	Very good
AS708	AQ806-rabbit	Good
AS274	AQ806-rabbit	Good
AQ806-mouse	Al334-rabbit	Very good
AR222	AI334-rabbit	Good
AR249	AI334-rabbit	Very good
AS702	AI334-rabbit	Very good
AS708	AI334-rabbit	Good
AS274	AI334-rabbit	Good

Development of Sandwich ELISA

Protocol:

Coat plate with 100 μ L/well of capture Ab at 2 μ g/mL. Incubation overnight at 4oC. Wash well three times with wash buffer (PBS + 0.5% Tween 20) Block with 300 μ L/well of blocking buffer (PBS + 5% Tween-20 + 0.6% Non-fat dry milk) for 1h at 37°C

Remove blocking buffer and pat dry on paper towel.

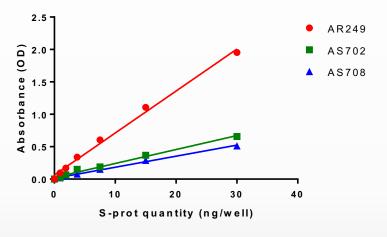
Dilute S-protein (1/200 to 1/6400; **30 to 0.94 ng/well**) in dilution buffer (PBS + 5% Tween-20 + 0.6% Non-fat dry milk + 5% NaCl) and add 80 μ L/well for 1 h at RT. Remove samples and wash well three times with wash buffer.

Add 100 μ L/well of **detection Ab at 2 \mug/mL** for 1 h at RT. Remove detection Abs and wash well three times with wash buffer

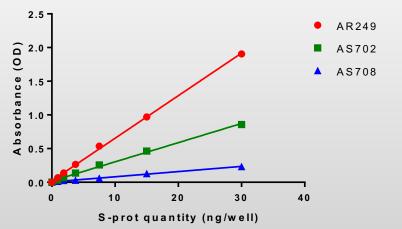
Add 100 μ L/well of HRP-conjugated anti-rabbit Ab diluted in dilution buffer (1/5 000) for 1 h at RT. Remove anti-rabbit Ab and wash well three times with wash buffer.

Add 50 μL for ~15 min at RT and add 50 μL of STOP solution Read plate at 450 nm

S-protein from BEI resources: Recombinant spike protein (His Tag), SARS-CoV-2 (NR-52308)



L/			
	Capture Ab	Detection Ab	Signal
	AI334-rabbit	AQ806	No signal
	AI334-rabbit	AR222	No signal
	AI334-rabbit	AR249	No signal
	AI334-rabbit	AS702	No signal
	AI334-rabbit	AS708	No signal
	AI334-rabbit	AS274	No signal
	AQ806-rabbit	AI334	No signal
	AQ806-rabbit	AR222	Faint
	AQ806-rabbit	AR249	Faint
	AQ806-rabbit	AS702	Faint
	AQ806-rabbit	AS708	Faint
	AQ806-rabbit	AS274	Faint
	AI334-mouse	AQ806-rabbit	No signal
	AR222	AQ806-rabbit	Good
	AR249	AQ806-rabbit	Very good
	AS702	AQ806-rabbit	Very good
	AS708	AQ806-rabbit	Good
	AS274	AQ806-rabbit	Good
	AQ806-mouse	AI334-rabbit	Very good
	AR222	Al334-rabbit	Good
	AR249	Al334-rabbit	Very good
	AS702	Al334-rabbit	Very good
	AS708	Al334-rabbit	Good
	AS274	AI334-rabbit	Good


Development of Sandwich ELISA

3- Dose response curves

Detection Ab: AI334 rabbit

Detection Ab: AQ806 rabbit

Capture AR249 AS702 AS708 AQ806 AI334 AQ806 AI334 AQ806 Detection AI334 30 ng 15 ng 7.5 ng 3.75 ng 1.88 ng 0.94 ng 0. ng

ក

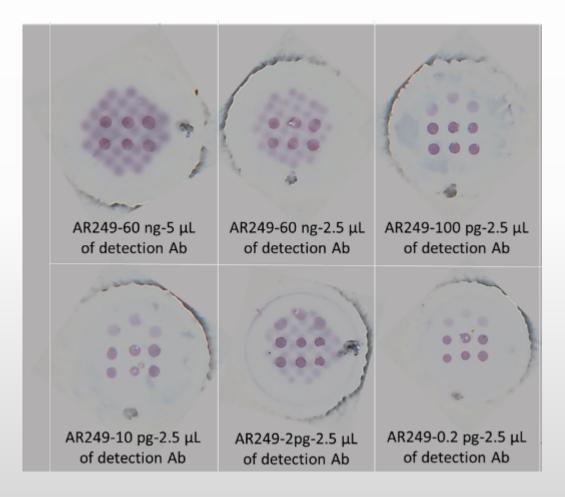
VFI integration of sandwich immunoassay

Protocol:

Membrane printed with capture antibody (3nL/spot)

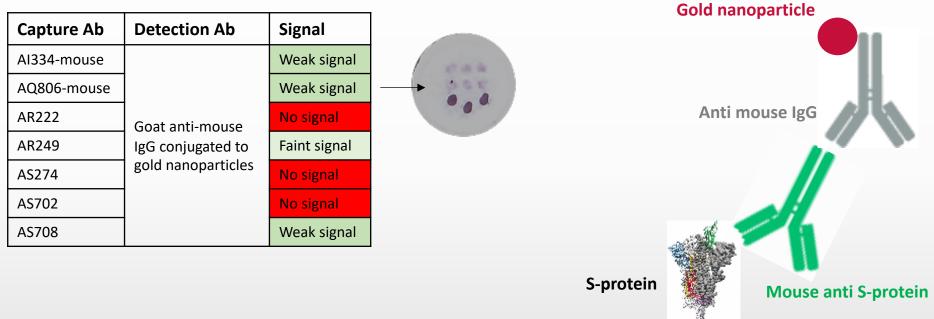
Blocking buffer (10 mM borate buffer (pH=8) with surfactant (2.5% Triton X-100, 1% BSA, 0.2% PVP-40, 0.1% sucrose)) flowed through the membrane at 0.2 ml/min

In the meantime, incubation for 10 min at RT of S-protein with 5 μ L of detection Ab diluted in assay buffer (0.1 M PB buffer (pH=7.2) with surfactant (0.1% Triton X-100, 0.5% BSA)) and filtration with 0.2 μ m PES filter to remove the big particles and aggregated gold nanoparticles


Sample flowed through the membrane at 0.2 ml/min

Assay buffer flowed through the membrane at 0.2 ml/min to wash membrane

Membrane reading


Capture antibody: High concentrated AR249 (1.6 mg/mL)

Detection antibody: AQ806-rabbit (1,78mg/ml) conjugated to gold nanoparticles (OD20)

Indirect ELISA to detect serological response to COVID-19 infection

VFI membrane

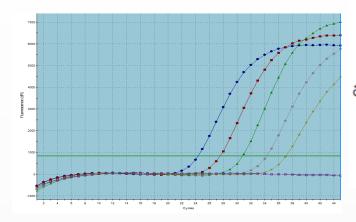
Weak signal due to low concentration of S-protein

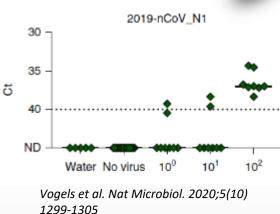
N gene amplification and detection by qPCR

CDC protocol

Target: Spiked plasmid

N gene primers/probe: Forward (F): GACCCCAAAATCAGCGAAAT Reverse (R): TCTGGTTACTGCCAGTTGAATCTG Probe (P):[5HEX]ACCCCGCATTACGTTTGGTGGACC[BHQ1a-Q]


Final concentration: 500 nM (F & R) 125 nM (P)


Kit: TaqPath[™] **1-Step** Multiplex Master Mix

Thermocycler: Stratagene Mx30005P (Agilent)

Cycle conditions:

Cycles	Temperature	Time
1	25°C	2 min
1	50°C	10 min
1	95°C	2 min
45	95°C	3 s
	55°C	30 s

Ct

23.05

26.25

29.6

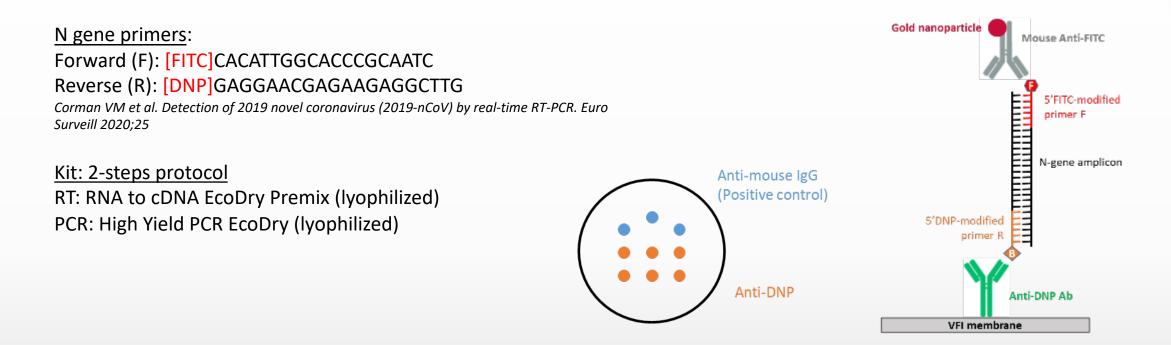
32.91

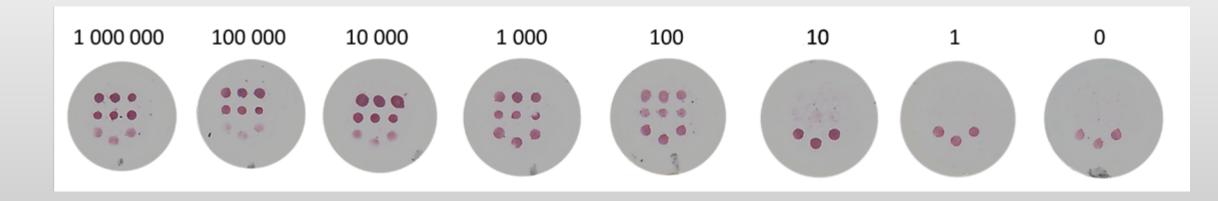
35.7

ND

ND

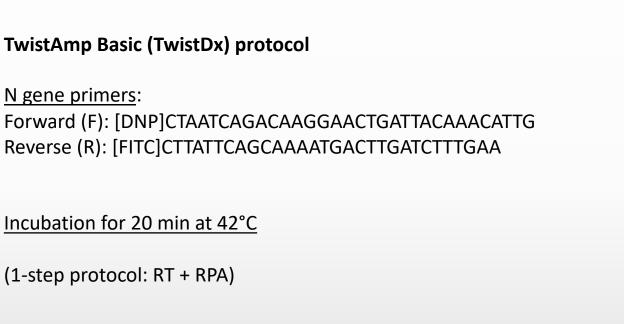
ion


	PCR efficiency	Viral RNA copies/reaction
40		200 000
35		20 000
30		20 000
25		2 000
さ 20		200
15	y = -3.196x + 40.052	200
10	R ² = 0.999	20
5		2
0		_
0	1 2 3 4 5 6	0
	Log10[Viral RNA Copies]	ND = Not Detected

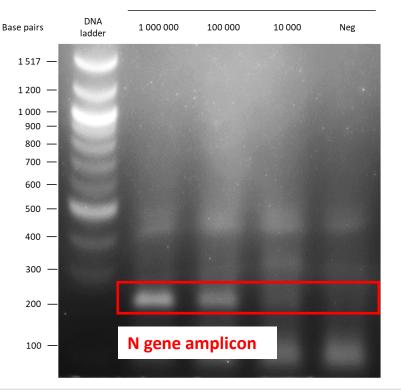

Efficiency = $-1 + 10^{(-1/slope)} \times 100 = 105\%$

N gene detection with VFI

XPRIZE nasal and saliva samples results for COVID-SARS2 detection: VERIFAST vs PCR


157 blinded samples with different matrixes (saliva, nasal swabs, PBS, water) tested in 2 days

Sample type	VERIFAST result	PCR result	Sample type	VERIFAST result	PCR result
Nasal	+	+	Nasal	-	-
Nasal	+	+	Saliva	+	-
Saliva	+	-	Nasal	+	+
Saliva	+	-	Nasal	failed	+
Nasal	+	+	Saliva	+	+
Saliva	+	+	Nasal	+	+
Nasal	+	+	Nasal	+	+
Saliva	+	+	Saliva	+	+
Nasal	+	+	Saliva	failed	+
Nasal	+	+	Nasal	+	+
Saliva	+	+	Saliva	+	+
Saliva	+	+	Nasal	+	+
Nasal	+	+	Nasal	+	+
Saliva	+	+	Nasal	+	+
Nasal	-	-	Nasal	+	+
Saliva	+	+	Saliva	+	+
Nasal	+	+	Saliva	failed	+
Nasal	+	+	Saliva	+	+
Saliva	+	-	Saliva	+	+
Saliva	+	+			

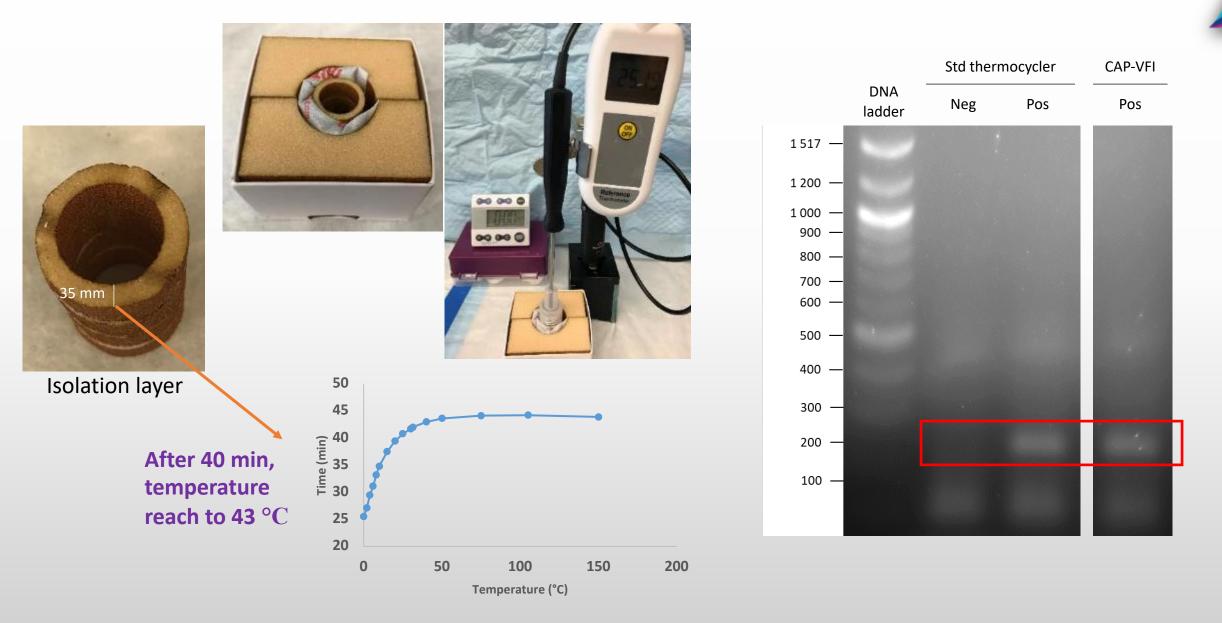


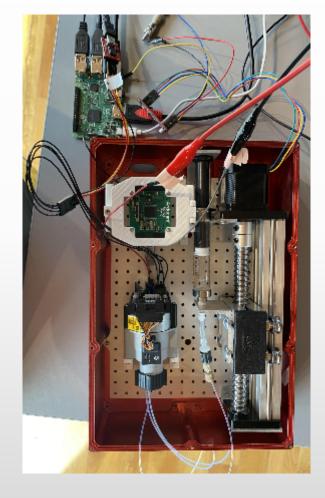
Development of <u>one-step</u> isothermal Amplification

Viral RNA copies/reaction

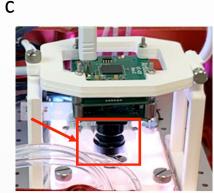
Next steps :

Test on VFI: sensitivity/Std qPCR and VFI, dose-dependent response, ...


Development of CAP-VFI



Integration of RT+RPA in CAP-VFI


Back to the Future: Automated System for Space

Automated VFP system in 6U CubeLab

Automated VFP prototype in CubeLab

Camera for Imaging

Membrane Holder and valves

Conclusion

- VFI platform is versatile for integrating several molecular assay tests from biofluids
- Demonstration of potential in COVID-19 to detect simultaneously viral particles (viral protein and/or (different) genes) + immune response (antibodies)
- Next configuration with new saliva collection kit will provide a full at home solution
- Validation for next FDA EUA and production
- Exploration for support from federal agencies and industry

Thank you

WRE N.

