

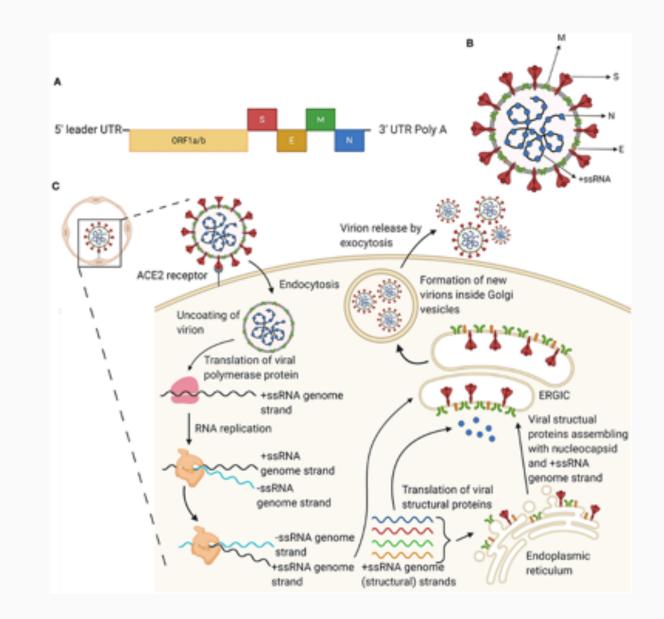
COVID-19 UPDATES

Ashwin Balagopal, M.D. Associate Professor of Medicine Division of Infectious Diseases Johns Hopkins University School of Medicine

DISCLOSURES

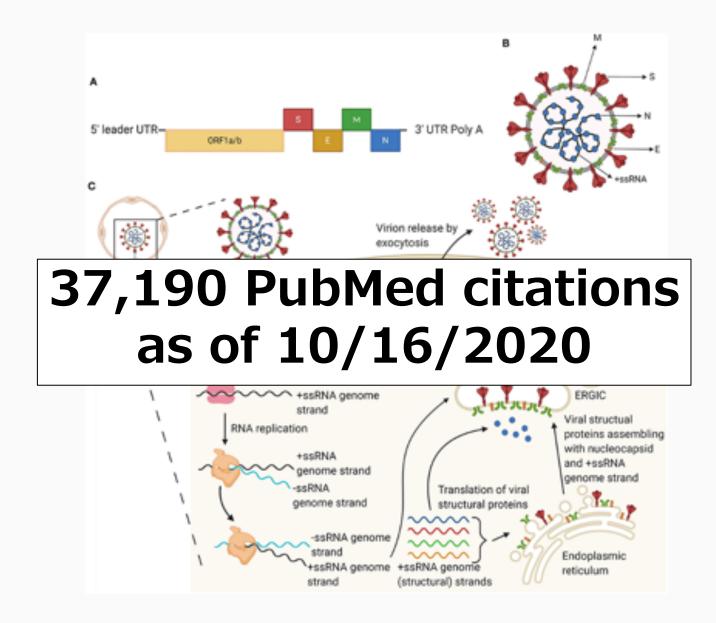
JHU IS RECEIVING FUNDS FOR A CLINICAL TRIAL OF EIDD-2801-2004 FROM RIDGEBACK BIOTHERAPEUTICS (PI:Balagopal)

OBJECTIVES


1. To discuss the changing trends of SARS-CoV-2 transmission globally and in the US

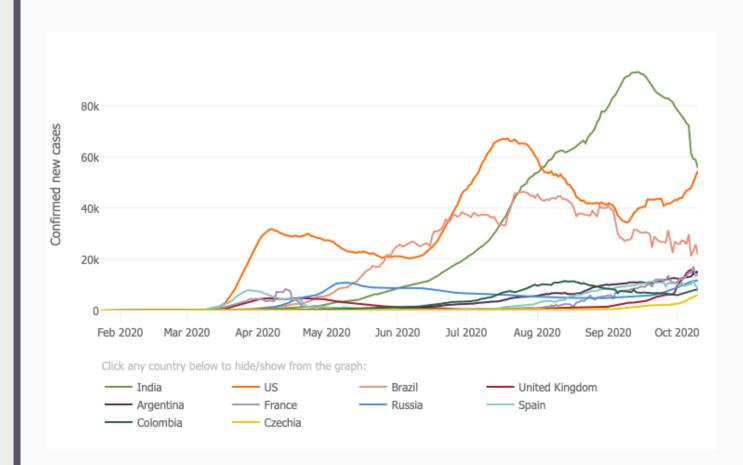
2. To discuss new and existing diagnostic platforms for SARS-CoV-2

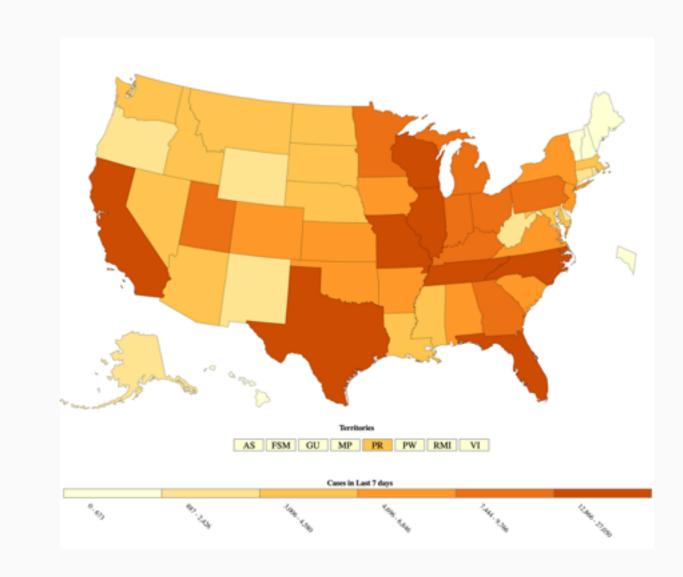
3. To discuss emerging therapeutics for SARS-CoV-2


4. To discuss progress towards a SARS-CoV-2 vaccine

SARS-CoV-2

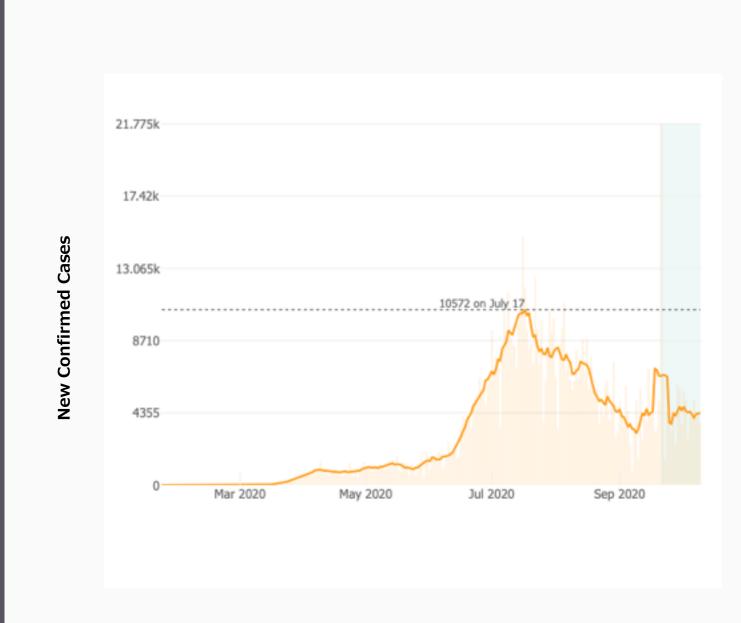
Frederiksen Front. Immunol., 21 July 2020

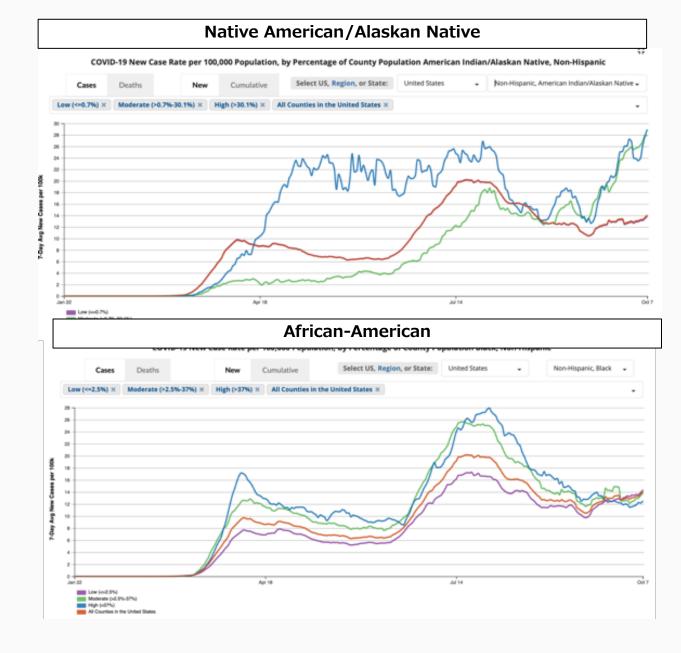

SARS-CoV-2


Frederiksen Front. Immunol., 21 July 2020

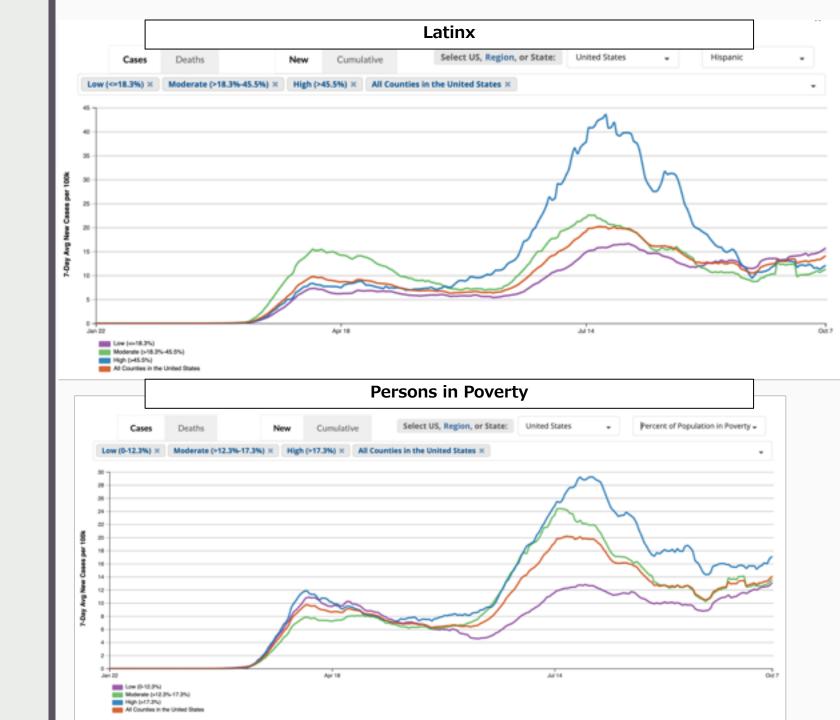
GLOBAL TRENDS

Johns Hopkins University and Medicine Coronavirus Resource Center

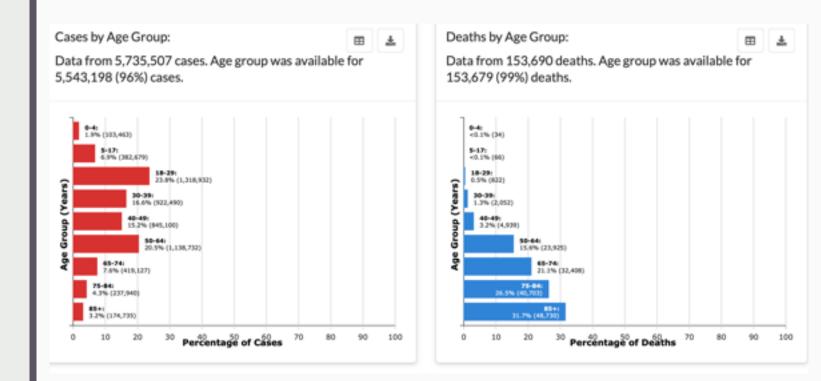

<u>US</u> TRENDS



cdc.gov


TEXAS TRENDS

Johns Hopkins University and Medicine Coronavirus Resource Center



cdc.gov

cdc.gov

Is SARS-CoV-2

airborne?

<u>CDC</u>

"The epidemiology of SARS-CoV-2 indicates that most infections are spread through close contact, not airborne transmission…

Airborne transmission of SARS-CoV-2 can occur under special circumstances…

Enclosed spaces

Prolonged exposure to respiratory particles

Inadequate ventilation or air handling

SARS-CoV-2 is a new virus, and we are still learning about how it behaves."

DIAGNOSTICS

RNA

NP swabs

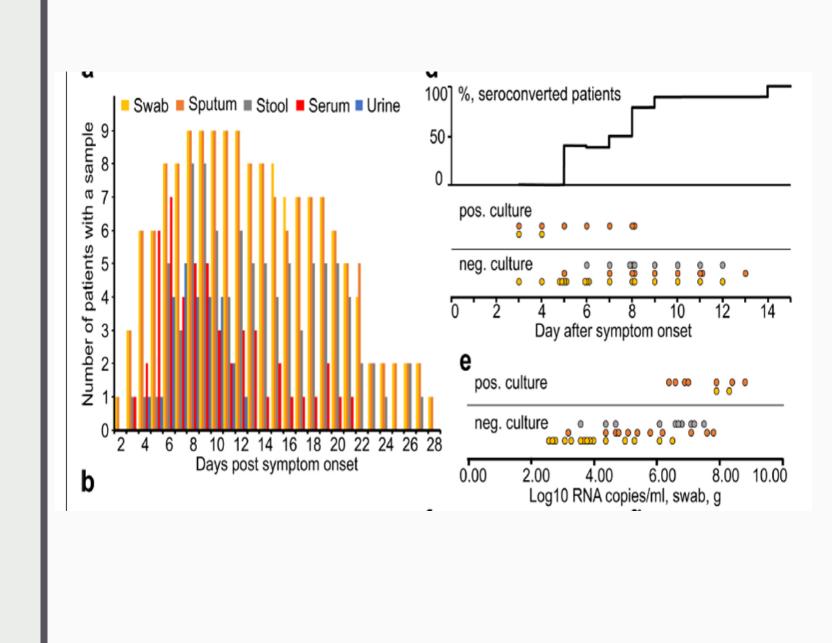
Oral/saliva

Antigen

Antibody

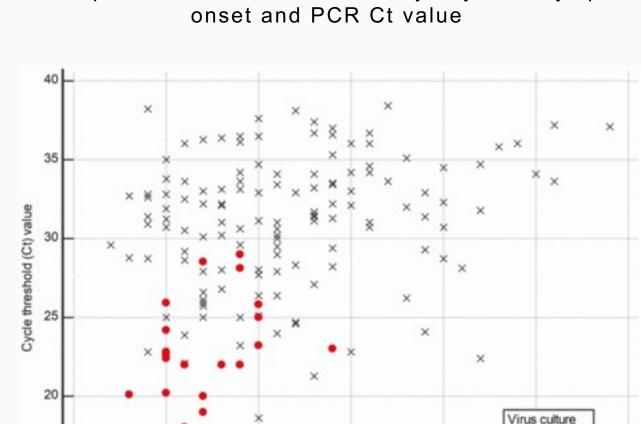
SARS-CoV-2

natural history


Article

Virological assessment of hospitalized patients with COVID-2019

	https://doi.org/10.1038/s41586-020-2196-x	Roman Wölfol ¹⁴ , Victor M. Corman ³⁴ , Wolfgang Guggernos ³⁴ , Michael Seitmaier ³ ,					
	Received: 1 March 2020	Sabine Zango ¹ , Marcel A. Müller ² , Daniela Niemeyer ² , Terry C. Jones ²⁴ , Patrick Vollmar ¹ , Camilla Rothe ⁸ , Michael Hoelscher ⁸ , Tobias Bleicker ² , Sebastian Brünink ² , Julia Schneider ² ,					
	Accepted: 24 March 2020	Rosina Ehmann ¹ , Katrin Zwirgimaior ¹ , Christian Droston ²⁷⁶² & Clomons Wondtnor ²⁷⁶²					
	Deblehad college 1 April 2020						


Published online: 1 April 2020

SARS-CoV-2 natural history

Wolfel, Nature, 2020

SARS-CoV-2 natural history

15

Day from symptom onset

20

10

5

Scatterplot of viral culture results by day from symptom

Clin Infect Dis, ciaa1280, https://doi.org/10.1093/cic/ciaa1280

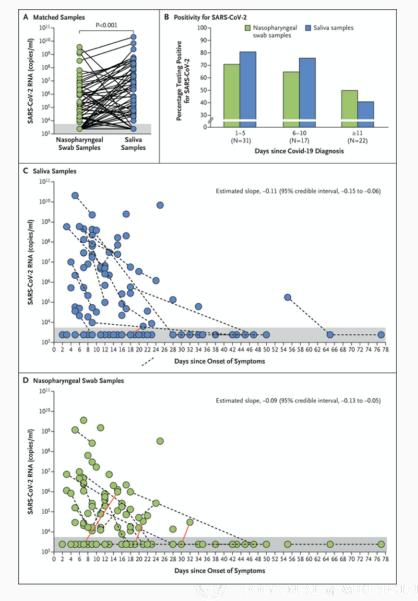
The content of this slide may be subject to copyright: please see the slide notes for details.

15

0

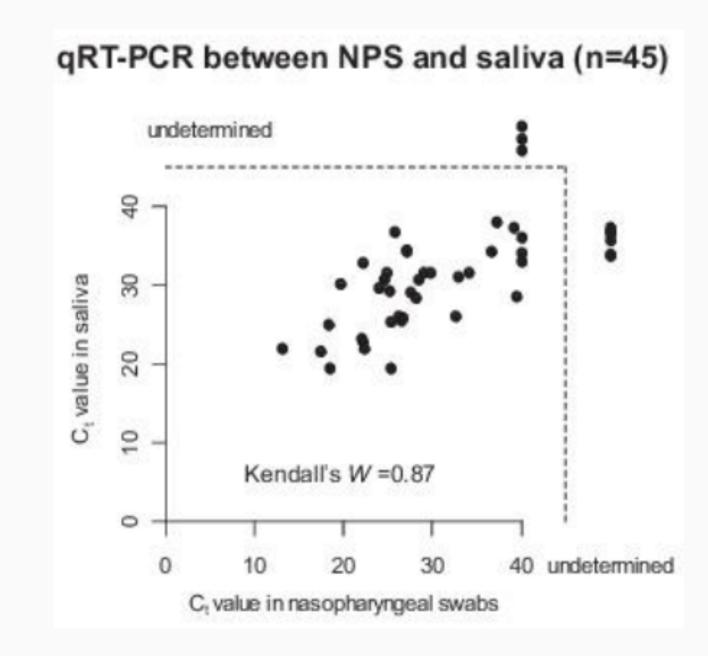
30

× Negative Positive


25

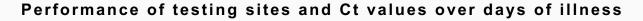
SARS-CoV-2 in

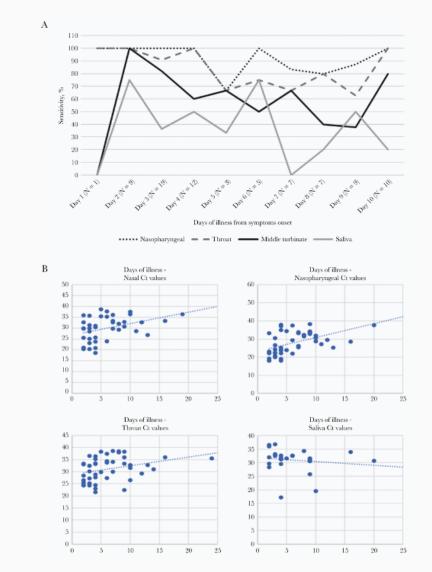
saliva vs. NP


swabs

SARS-CoV-2 RNA Titers in Saliva Specimens and Nasopharyngeal Swab Specimens.

AL Wyllie et al. N Engl J Med 2020;383:1283-1286

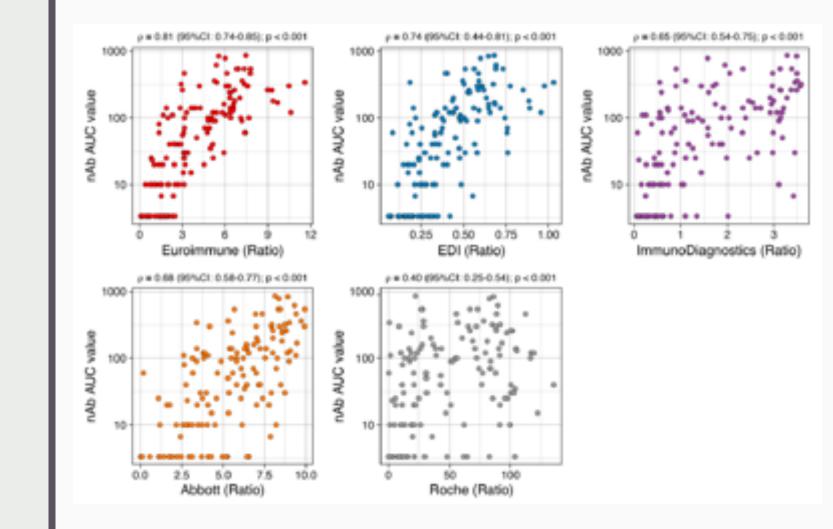

SARS-CoV-2 in saliva vs. NP swabs



Yokota et al., CID, September, 2020

SARS-CoV-2 in other body

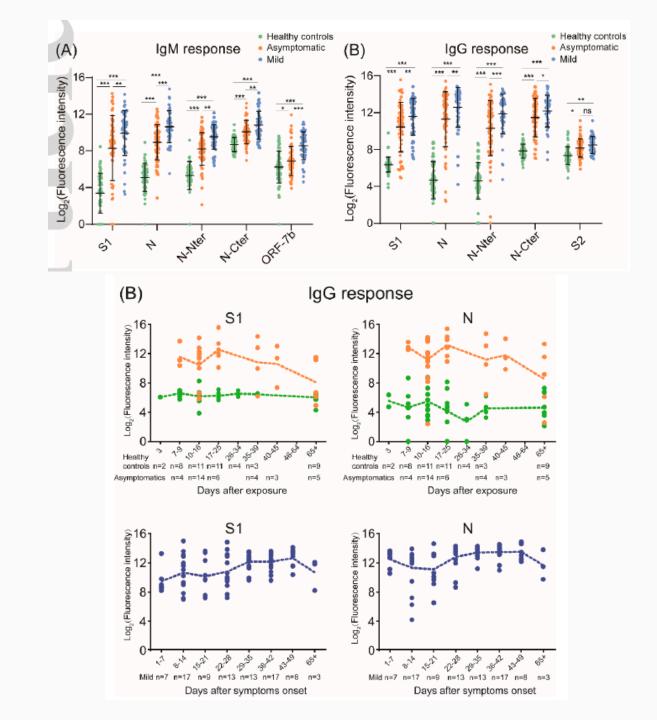
compartments


Open Forum Infect Dis, Volume 7, Issue 9, September 2020, ofaa335, https://doi.org/10.1093/ofid/ofaa335

The content of this slide may be subject to copyright: please see the slide notes for details.

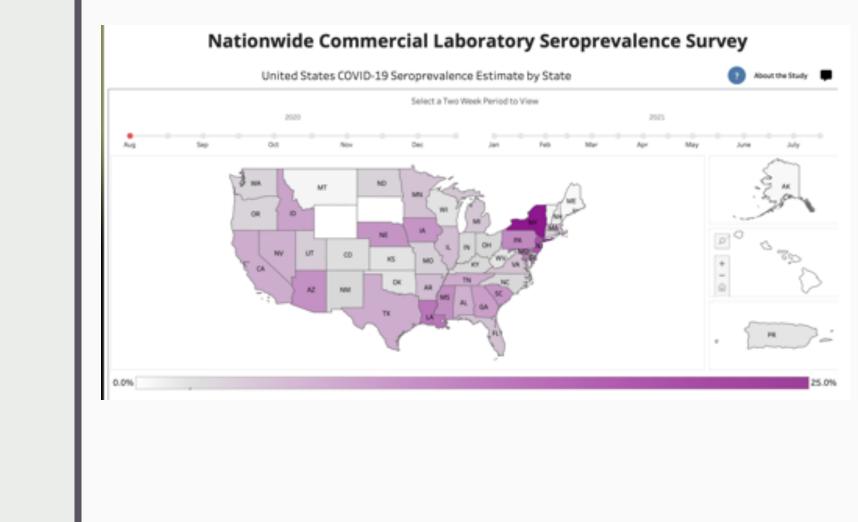
Antibody testing

Are all anti-SARS-CoV-2 antibody tests equivalent?



Patel, medRxiv, 2020

Anti-SARS-CoV-2 antibody


dynamics

National anti-SARS-CoV-2

seroprevalence

• Several serologic assays for SARS-CoV-2 have Emergency Use Authorization (EUA) by the U.S. Food and Drug Administration (FDA), which has independently reviewed their performance.

• Currently, there is no identified advantage whether the assays test for IgG, IgM and IgG, or total antibody.

• It is important to minimize false-positive test results by choosing an assay with high specificity and by testing populations and individuals with an elevated likelihood of previous exposure to SARS-CoV-2. Alternatively, an orthogonal testing algorithm (i.e., employing two independent tests in sequence when the first test yields a positive result) can be used when the expected positive predictive value of a single test is low.

• Several serologic assays for SARS-CoV-2 have Emergency Use Authorization (EUA) by the U.S. Food and Drug Administration (FDA), which has independently reviewed their performance.

• Currently, there is no identified advantage whether the assays test for IgG, IgM and IgG, or total antibody.

• It is important to minimize false-positive test results by choosing an assay with high specificity and by testing populations and individuals with an elevated likelihood of previous exposure to SARS-CoV-2. Alternatively, an orthogonal testing algorithm (i.e., employing two independent tests in sequence when the first test yields a positive result) can be used when the expected positive predictive value of a single test is low.

• Currently, there is no identified advantage whether the assays test for IgG, IgM and IgG, or total antibody.

• It is important to minimize false-positive test results by choosing an assay with high specificity and by testing populations and individuals with an elevated likelihood of previous exposure to SARS-CoV-2. Alternatively, an orthogonal testing algorithm (i.e., employing two independent tests in sequence when the first test yields a positive result) can be used when the expected positive predictive value of a single test is low.

[•] Several serologic assays for SARS-CoV-2 have Emergency Use Authorization (EUA) by the U.S. Food and Drug Administration (FDA), which has independently reviewed their performance.

• Currently, there is no identified advantage whether the assays test for IgG, IgM and IgG, or total antibody.

• It is important to minimize false-positive test results by choosing an assay with high specificity and by testing populations and individuals with an elevated likelihood of previous exposure to SARS-CoV-2. Alternatively, an orthogonal testing algorithm (i.e., employing two independent tests in sequence when the first test yields a positive result) can be used when the expected positive predictive value of a single test is low.

[•] Several serologic assays for SARS-CoV-2 have Emergency Use Authorization (EUA) by the U.S. Food and Drug Administration (FDA), which has independently reviewed their performance.

Antigen testing SARS-CoV-2 nucleocapsid protein

	Ct≤40 as NA testing positiveª	Ct≤37 as NA testing positive
Prevalence (%)	80.1 (201/251)	61.7 (155/251)
95% CI	74.5-84.7	55.4-67.7
Sensitivity (%)	75.6 (152/201)	91.0 (141/155)
95% CI	69.0-81.3	85.0-94.8
Specificity (%)	100 (50/50)	88.5 (85/96)
95% CI	91.1-100	80.0-93.9
Positive predictive value (%)	100 (152/152)	92.8 (141/152)
95% CI	96.9-100	87.1-96.2
Negative predictive value (%)	50.5 (50/99)	85.9 (85/99)
95% CI	40.3-60.6	77.1-91.8
Percent agreement	80.5 (202/251)	90.0 (226/251)
95% CI	75.1-84.9	85.7-93.2

Study	TP	FP	FN	TN	Test	Sample type	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Weitzel 2020 [C]	13	0	65	31	Beijing Savant - FIA	NP + OP	0.17 [0.09, 0.27]	1.00 [0.89, 1.00]	-	
Lambert-Niclot 2020	47	0	47	44	Coris BioConcept - CGIA	NP	0.50 [0.40, 0.60]	1.00 [0.92, 1.00]		
Mertens 2020	76	1	56	195	Coris BioConcept - CGIA	NP	0.58 [0.49, 0.66]	0.99 [0.97, 1.00]		
Diao 2020	141	0	67	31	In-house - FIA	NP	0.68 [0.61, 0.74]	1.00 [0.89, 1.00]		
Weitzel 2020 (B)	0	1	9	9	Liming Bio-Products - CGIA	NP + OP	0.00 [0.00, 0.34]	0.90 [0.55, 1.00]		
Weitzel 2020 [A]	49	0	30	30	RapiGEN Inc - CGIA	NP + OP	0.62 [0.50, 0.73]	1.00 [0.88, 1.00]		
Weitzel 2020 [D]	68	0	12	31	Shenzhen Bioeasy - FIA	NP + OP	0.85 [0.75, 0.92]	1.00 [0.89, 1.00]		
Porte 2020	77	0	5	45	Shenzhen Bioeasy - FIA	NP + OP	0.94 [0.86, 0.98]	1.00 [0.92, 1.00]		

Antigen testing

Antigen tests - high viral load

Study	TP	FP	FN	ΤN	Test	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Weitzel 2020 [C]	11	0	41	0	Beijing Savant - FIA	0.21 [0.11, 0.35]	Not estimable		
Mertens 2020	65	0	23	0	Coris BioConcept - CGIA	0.74 [0.63, 0.83]	Not estimable		
Lambert-Niclot 2020	37	0	8	0	Coris BioConcept - CGIA	0.82 [0.68, 0.92]	Not estimable		
Diao 2020	55	0	1	0	In-house - FIA	0.98 [0.90, 1.00]	Not estimable		
Weitzel 2020 [A]	45	0	8	0	RapiGEN Inc - CGIA	0.85 [0.72, 0.93]	Not estimable		
Weitzel 2020 [D]	54	0	0	0	Shenzhen Bioeasy - FIA	1.00 [0.93, 1.00]	Not estimable	-	l
Porte 2020	52	0	0	0	Shenzhen Bioeasy - FIA	1.00 [0.93, 1.00]	Not estimable		
								0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Antigen tests - low vir	al loa	d							
Study	TP	FP	FN	ΤN	Test	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Weitzel 2020 [C]	2	0	24	0	Beijing Savant - FIA	0.08 [0.01, 0.25]	Not estimable	-	
Mertens 2020	11	0	33	0	Coris BioConcept - CGIA	0.25 [0.13, 0.40]	Not estimable		
Lambert-Niclot 2020	10	0	39	0	Coris BioConcept - CGIA	0.20 [0.10, 0.34]	Not estimable	-	
Diao 2020	86	0	66	0	In-house - FIA	0.57 [0.48, 0.65]	Not estimable		
Weitzel 2020 (A)	4	0	22	0	RapiGEN Inc - CGIA	0.15 [0.04, 0.35]	Not estimable	-	
Weitzel 2020 [D]	14	0	12	0	Shenzhen Bioeasy - FIA	0.54 [0.33, 0.73]	Not estimable		
Porte 2020	13	0	5	0	Shenzhen Bioeasy - FIA	0.72 [0.47, 0.90]	Not estimable		
								0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

THERAPEUTICS

Antivirals Immunomodulatory agents Convalescent Plasma

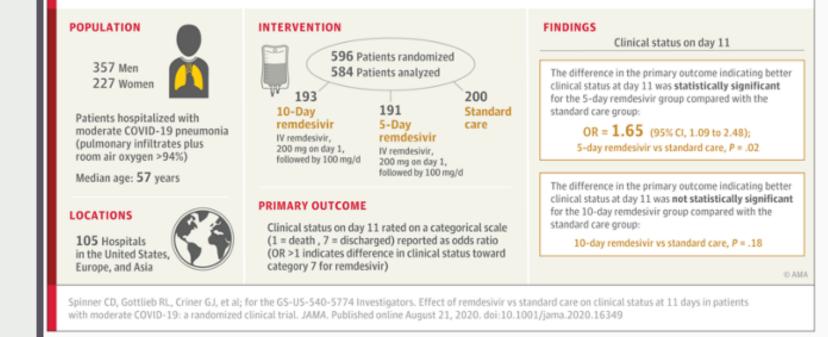
Repurposed Medicines

Antivirals

- Remdesivir
- EIDD-2801
- Convalescent Plasma
- Monoclonal antibodies against the spike protein

From: Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial

JAMA. 2020;324(11):1048-1057. doi:10.1001/jama.2020.16349

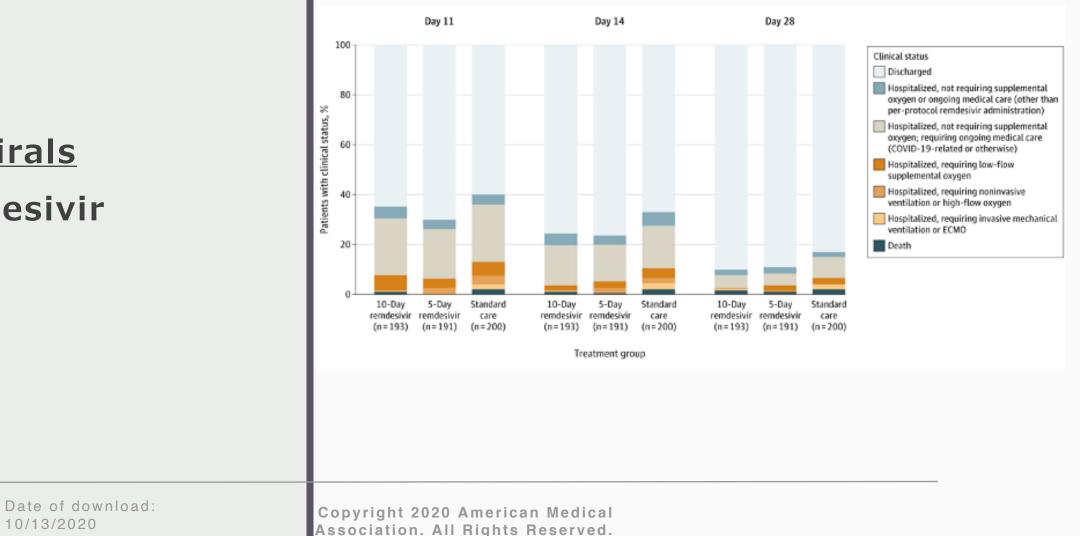

<u>Antivirals</u>

Remdesivir

JAMA Network

QUESTION Does remdesivir provide a benefit on clinical status for patients hospitalized with moderate COVID-19 pneumonia?

CONCLUSION This clinical trial found that hospitalized patients with moderate COVID-19 randomized to a 5-day course, but not a 10-day course, of remdesivir had a statistically significant better clinical status vs standard care at 11 days, but the difference was of uncertain clinical importance.


Date of download: 10/13/2020

Copyright 2020 American Medical Association. All Rights Reserved.

From: Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial

JAMA. 2020;324(11):1048-1057. doi:10.1001/jama.2020.16349

Antivirals Remdesivir

10/13/2020

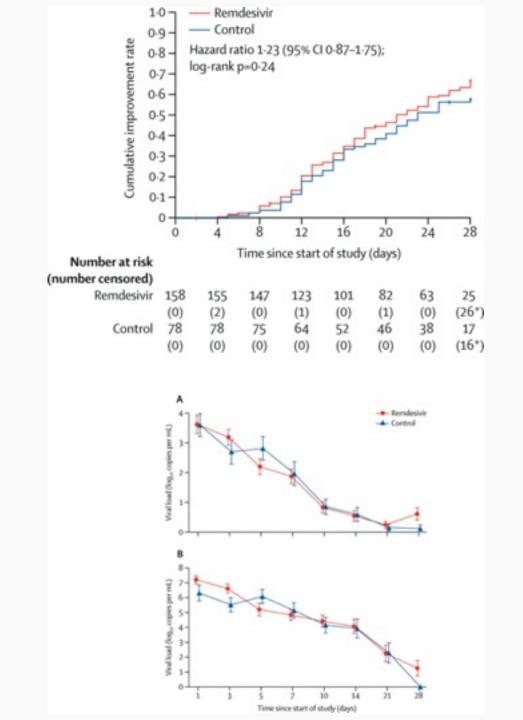
From: Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: **A Randomized Clinical Trial**

JAMA. 2020;324(11):1048-1057. doi:10.1001/jama.2020.16349

Antivirals

Remdesivir

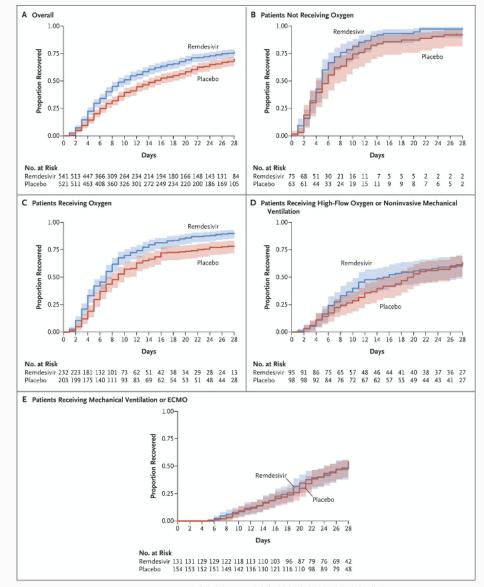
	No./total (%)			
Adverse events	10-Day remdesivir (n = 193)	5-Day remdesivir (n = 191)	Standard care (n = 200)	
Any adverse event	113 (59)	98 (51)	93 (47)	
Any grade ≥3 adverse event	24 (12)	20 (10)	24 (12)	
Any serious adverse event	10 (5)	9 (5)	18 (9)	
Discontinuation of treatment because of adverse event	8 (4)	4 (2)	NA	
Death ^b	3 (2)	2(1)	4 (2)	
Adverse events occurring in >5% of participants in any treatment group				
Nausea	18 (9)	19 (10)	6 (3)	
Diarrhea	10 (5)	12 (6)	14(7)	
Hypokalemia	13 (7)	10 (5)	4 (2)	
Headache	10 (5)	10 (5)	5 (3)	
Laboratory abnormalities				
Any grade	128/179 (72)	131/180 (73)	136/186 (73)	
Grade 3	25/179 (14)	18/180 (10)	25/186 (13)	
Grade 4	4/179 (2)	5/180 (3)	9/186 (5)	
Alanine aminotransferase increase				
Any grade	57/177 (32)	61/179 (34)	71/182 (39)	
Grade 3 (>5 to 10 times ULN)	6/177 (3)	4/179 (2)	11/182 (6)	
Grade 4 (>10 times ULN)	0	0	3 (2)	
Aspartate aminotransferase increase				
Any grade	56/175 (32)	56/177 (32)	60/182 (33)	
Grade 3 (>5 to 10 times ULN)	2/175 (1)	3/177 (2)	6/182 (3)	
Grade 4 (>10 times ULN)	0	1/177 (1)	5/182 (3)	
Creatinine clearance decrease				Abbreviations: NA, not app
Any grade	45/176 (26)	26/178 (15)	55/183 (30)	ULN, upper limit of normal
Grade 3 (30 to <60 mL/min or 30% to <50% decrease from baseline)	7/176 (4)	4/178 (2)	9/183 (5)	^a All safety analyses are inc available data for patients
Grade 4 (<30 mL/min, ≥50% decrease from baseline, or dialysis needed)	2/176 (1)	0	5/183 (3)	the data cutoff time point ^b Through day 28 of the tria


not applicable; normal. s are inclusive of all patients through me point.

Date of download: 10/13/2020

Copyright 2020 American Medical Association. All Rights Reserved.

Antivirals


Remdesivir

Wang, Lancet, 2020

Remdesivir

Kaplan–Meier Estimates of Cumulative Recoveries

JH Beigel et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2007764

TRINEW ENGLAND | OURNAL MEDICINI

Remdesivir

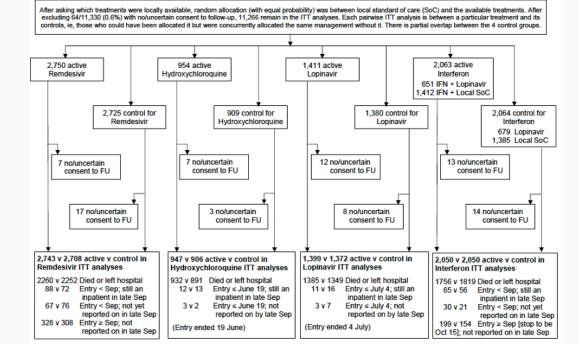
Time to Recovery According to Subgroup

Subgroup	No. of Patients		Recovery Rate Ratio (95% CI)	
All patients	1062		: (1.29 (1.12-1.49)
Geographic region				
North America	847		()	1.30 (1.10-1.53)
Europe	163		(↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1.30 (0.91-1.87)
Asia	52		(<u> </u>	1.36 (0.74-2.47)
Race				
White	566		·	1.29 (1.06-1.57)
Black	226		← ← ← → →	1.25 (0.91-1.72)
Asian	135		(<u> </u>	1.07 (0.73-1.58)
Other	135		(1.68 (1.10-2.58
Ethnic group				
Hispanic or Latino	250		← → →	1.28 (0.94-1.73)
Not Hispanic or Latino	755		(· · · · · · · · · · · · · · · · · · ·	1.31 (1.10-1.55
Age				
18 to <40 yr	119		· · · · · · · · · · · · · · · · · · ·	1.95 (1.28-2.97)
40 to <65 yr	559		(1.19 (0.98-1.44)
≥65 yr	384		↓ → →	1.29 (1.00-1.67
Sex				
Male	684		· (1.30 (1.09-1.56)
Female	278		(1.31 (1.03-1.66)
Symptoms duration				
≤10 days	676		(1.37 (1.14-1.64)
>10 days	383			1.20 (0.94-1.52)
Baseline ordinal score				
4 (not receiving oxygen)	138			1.29 (0.91-1.83)
5 (receiving oxygen)	435		(1.45 (1.18-1.79)
 (receiving high-flow oxygen or noninvasive mechanical ventilation) 	193		(1.09 (0.76–1.57)
7 (receiving mechanical ventilation or ECMO)	285	0.33 0.50	() 1.00 2.00 3.00	0.98 (0.70-1.36)
		Placebo Be	etter Remdesivir Better	

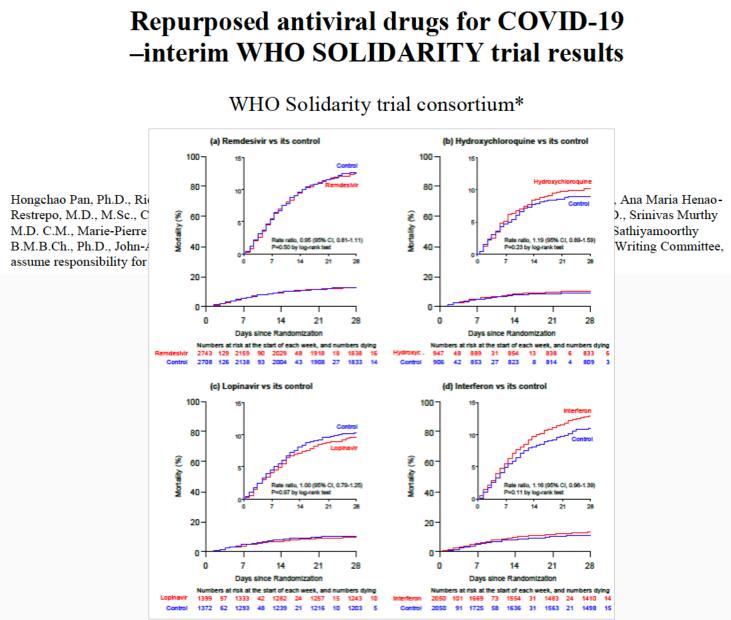
JH Beigel et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2007764

THE NEW ENGLAND JOURNAL & MEDICI

Remdesivir


MedRxiv (October 15) version

Repurposed antiviral drugs for COVID-19 –interim WHO SOLIDARITY trial results


WHO Solidarity trial consortium*

*A complete list of SOLIDARITY Trial investigators is provided in the Supplementary Appendix.

Hongchao Pan, Ph.D., Richard Peto, F.R.S., Quarraisha Abdool Karim, Ph.D., Marissa Alejandria M.D., M.Sc., Ana Maria Henao-Restrepo, M.D., M.Sc., César Hernández García M.D., Ph.D., Marie-Paule Kieny Ph.D., Reza Malekzadeh M.D., Srinivas Murthy M.D. C.M., Marie-Pierre Preziosi M.D., Ph.D., Srinath Reddy M.D., D.M., Mirta Roses Periago M. D., Vasee Sathiyamoorthy B.M.B.Ch., Ph.D., John-Arne Røttingen M.D., Ph.D., and Soumya Swaminathan M.D., as the members of the Writing Committee, assume responsibility for the content and integrity of this article.

Remdesivir

MedRxiv (October 15) version

Molnupiravir (EIDD-2801)

ClinicalTrials.gov	Find Studies	About Studies -	Submit Studies 🔻	Resources *	About Site 🕶	PRS Login
Home > Search Results > Study Record Detail					_ S	ave this study
	Trial record 2 d	of 3 for: EIDD-	2801			
<u> </u>	revious Study F	Return to List N	ext Study ►			
The Safety of Molnupiravir (EIDD-2801) and Its Effect	t on Viral Shedo	ding of SARS-C	oV-2 (END-COVIE))		
		-				
			ClinicalTrials.gov Id	entifier: NCT0440	5739	
The safety and scientific validity of this study is the responsibility of sponsor and investigators. Listing a study does not mean it has bee			Recruitment Statu	🚯 : Recruiting		
evaluated by the U.S. Federal Government. Know the risks and pote			First Posted (): M			
benefits of clinical studies and talk to your health care provider befo	re		Last Update Poste		020	
			See Contacts and	Locations		

Multiple ongoing international trials

Information provided by (Responsible Party): Ridgeback Biotherapeutics, LP

Convalescent

Plasma

medRxiv preprint doi: https://doi.org/10.1101/2020.08.12.20169359.this version posted August 12, 2020. The copyright holder for this prepr (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Effect of Convalescent Plasma on Mortality among Hospitalized Patients with COVID-19: Initial Three-Month Experience

Michael J. Joyner^{1*}, M.D., Jonathon W. Senefeld¹, Ph.D., Stephen A. Klassen¹, Ph.D., John R. Mills², Ph.D., Patrick W. Johnson³, Elitza S. Theel², Ph.D., Chad C. Wiggins¹, Ph.D., Katelyn A. Bruno⁴, Ph.D., Allan M. Klompas¹, M.B., B.Ch., B.A.O., Elizabeth R. Lesser³, Katie L. Kunze⁵, Ph.D., Matthew A. Sexton¹, M.D., Juan C. Diaz Soto¹, M.D., Sarah E. Baker¹, Ph.D., John R.A. Shepherd¹, M.D., Noud van Helmond⁶, M.D., Nigel S. Paneth^{7,8#}, M.D., M.P.H., Ph.D., DeLisa Fairweather^{4#}, Ph.D., R. Scott Wright^{9,10#}, M.D., Rickey E. Carter^{3#}, Ph.D., Arturo Casadevall^{11#}, M.D., Ph.D., *the US EAP COVID-19 Plasma Consortium*.

Convalescent

Plasma

Summary of Randomized Clinical Trials*

Study	Location	Mortality	Other Benefits	Status	Comment
Li et al (1)	China	26% → 16% (NS) n = (SOC) vs (CP) 51 vs 52	↓ Viral Load ↓ O2 Demand ↓Recovery time	Premature termination	Late Usage; efficacy in less critically ill patients
Gharbharan et al. (2)	Netherlands	24% → 14% (NS) 43 vs 43		Premature termination	Late Usage
Avendano- Sola et al. (3)	Spain	9% → o (p = 0.06) 43 vs 38	↓ Progression to ICU	Premature termination	Early use
Agarwal et al. (4)	India	14% → 14% (NS) 229 vs 235	↓Viral Load ↓FiO2 ↓Fever	Completed	A large proportion of units had low or no specific antibody
Rashid et al. (5)	Iraq	40% → 5% (p < 0.05) 28 vs 21	↓Recovery time	Completed	Small, not blinded, quirky randomization

*Table provided by Dr. Arturo Casadevall and Dr. Stuart Ray

1. Li L, Jama. 2020. Epub 2020/06/04. doi: 10.1001/jama.2020.10044. PubMed PMID: 32492084.

2. Gharbharan A, medRxiv. 2020:2020.07.01.20139857. doi: 10.1101/2020.07.01.20139857.

3. Avendano-Sola C, medRxiv. 2020:2020.08.26.20182444. doi:10.1101/2020.08.26.20182444.

4. Agarwal A, medRxiv. 2020:2020.09.03.20187252. doi: 10.1101/2020.09.03.20187252.

5. Rasheed AM, Le infezioni in medicina. 2020;28(3):357-66. Epub 2020/09/14. PubMed PMID: 32920571.

Monoclonal antibodies

Monoclonal antibodies against the spike protein

Apply	Row	Saved	Status	Study Title	Conditions	Interventions	Locations
		0	Recruiting	Safety, Tolerability, and Efficacy of Anti-Spike (S) SARS-CoV-2 Monoclonal Antibodies for the Treatment of Ambulatory Adult Patients With COVID-19	• COVID-19	Drug: REGN10933+REGN10987 combination therapy Drug: Placebo	 Regenero Study Site Tucson, Arizona, United Sta
 Not yet recruiting Recruiting Enrolling by invitation Active, not recruiting 							 Regenero Study Site Tucson, Arizona, United Sta
Suspended Terminated Completed Withdrawn Unknown status [†]							 Regenerry Study Site Tucson, Arizona, United St (and 92 more)
•	•		Recruiting	Safety, Tolerability, and Efficacy of Anti-Spike (S) SARS-CoV-2 Monoclonal Antibodies for Hospitalized Adult Patients With COVID-19	• COVID-19	Drug: REGN10933+REGN10987 combination therapy	 Regenered Study Site Birmingha

A Study of LY3819253 (LY-CoV555) and LY3832479 (LY-CoV016) in Participants With Mild to Moderate COVID-19 Illness (BLAZE-1)

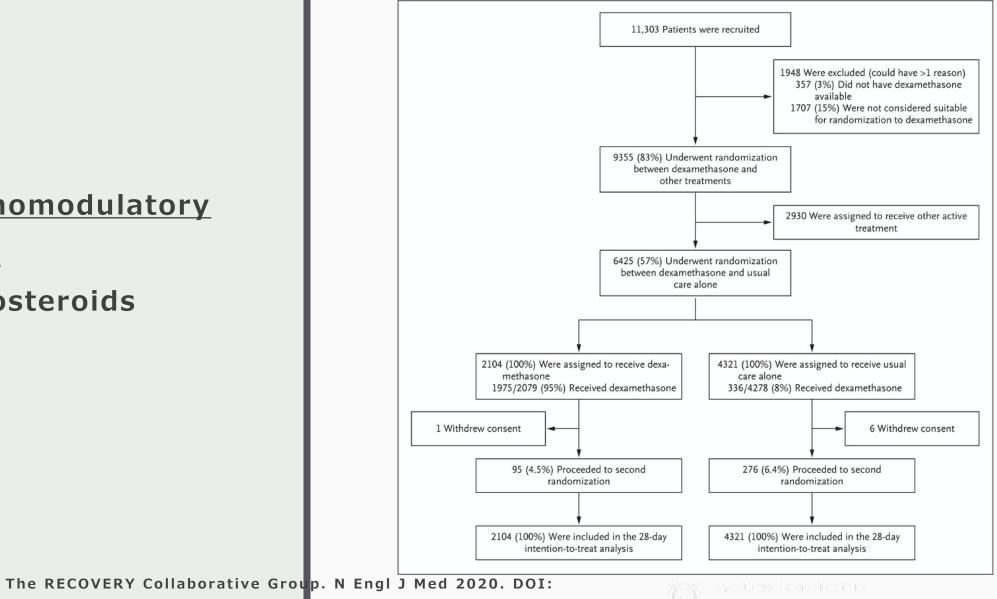
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential <u>benefits</u> of clinical studies and talk to your health care provider before participating. Read our <u>disclaimer</u> for details.

ClinicalTrials.gov Identifier: NCT04427501

Recruitment Status : Recruiting First Posted : June 11, 2020 Last Update Posted : September 18, 2020

See Contacts and Locations

Sponsor:


Eli Lilly and Company

Collaborators: AbCellera Biologics Inc. Shanghai Junshi Bioscience Co., Ltd.

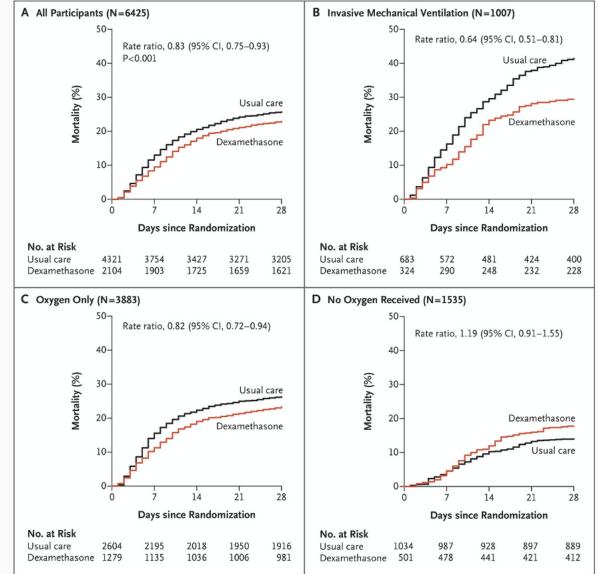
Information provided by (Responsible Party): Eli Lilly and Company

<u>agents</u>

Enrollment, Randomization, and Inclusion in the Primary Analysis

Immunomodulatory

<u>agents</u>


Corticosteroids

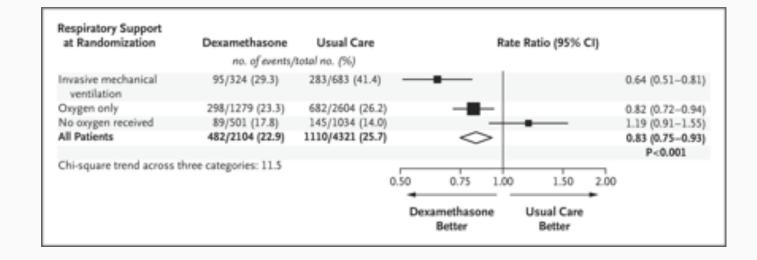
10.1056/NEJMoa2021436

agents

Corticosteroids

Mortality at 28 Days in All Patients and According to Respiratory Support at Randomization

The RECOVERY Collaborative Group. N Engl J Med 2020. DOI:


10.1056/NEJMoa2021436

TR NEW ENGLAND Journal & Medicin

agents

Corticosteroids

Mortality at 28 Days in All Patients and According to Respiratory Support at Randomization

The RECOVERY Collaborative Group. N Engl J Med 2020. DOI: 10.1056/NEJMoa2021436

From: Association Between Administration of Systemic Corticosteroids and Mortality Among Critically III Patients With COVID-19: A Meta-analysis

JAMA. 2020;324(13):1330-1341. doi:10.1001/jama.2020.17023

Immunomodulatory

<u>agents</u>

Corticosteroids

	ClinicalTrials.gov	Initial dose and	No. of dea No. of pat	aths/total tients	Odds ratio	Favors	Favors no	Weigh
Drug and trial	identifier	administration	Steroids	No steroids	(95% CI)	steroids	steroids	%
Dexamethasone								
DEXA-COVID 19	NCT04325061	High: 20 mg/d intravenously	2/7	2/12	2.00 (0.21-18.69)		•	→ 0.92
CoDEX	NCT04327401	High: 20 mg/d intravenously	69/128	76/128	0.80 (0.49-1.31)			18.69
RECOVERY	NCT04381936	Low: 6 mg/d orally or intravenously	95/324	283/683	0.59 (0.44-0.78)			57.00
Subgroup fixed ef	ffect		166/459	361/823	0.64 (0.50-0.82)			76.60
Hydrocortisone								
CAPE COVID	NCT02517489	Low: 200 mg/d intravenously	11/75	20/73	0.46 (0.20-1.04)		2 	6.80
COVID STEROID	NCT04348305	Low: 200 mg/d intravenously	6/15	2/14	4.00 (0.65-24.66)			→ 1.39
REMAP-CAP	NCT02735707	Low: 50 mg every 6 h intravenously	26/105	29/92	0.71 (0.38-1.33)			11.75
Subgroup fixed ef	ffect		43/195	51/179	0.69 (0.43-1.12)		-	19.94
Methylprednisolon	e							
Steroids-SARI	NCT04244591	High: 40 mg every 12 h intravenously	13/24	13/23	0.91 (0.29-2.87)	•		3.46
Overall (fixed effec	t)		222/678	425/1025	0.66 (0.53-0.82)			100.0
P = .31 for heteroge	eneity; / ² = 15.6%							
Overall (random ef	fects ^a)		222/678	425/1025	0.70 (0.48-1.01)	\diamond		
					c	0.2	1	4
						Odds ratio	(95% CI)	

Copyright 2020 American Medical Association. All Rights Reserved.

From: Association Between Administration of Systemic Corticosteroids and Mortality Among Critically III Patients With COVID-19: A Meta-analysis

JAMA. 2020;324(13):1330-1341. doi:10.1001/jama.2020.17023

Immunomodulatory

<u>agents</u>

Corticosteroids

	No. of death No. of patie		Odds ratio	Favors Favors	no Weight,
Subgroup	Steroids No steroids (95% CI) stero		steroids steroid		
Invasive mechanical ventilat	ion (IMV)				
No ($l^2 = 0\%$)	14/70	28/74	0.41 (0.19-0.88)	← ■	2.7
Yes (1 ² = 44.1%)	208/608	397/951	0.69 (0.55-0.86)		31.7
Oxygen treatment without IMV (RECOVERY)	298/1279	682/2604	0.86 (0.73-1.00)		65.6
Taking vasoactive medicatio	n				
No (1 ² = 0%)	51/184	68/184	0.55 (0.34-0.88)		50.2
Yes (/2 = 0%)	76/169	74/158	1.05 (0.65-1.69)		- 49.8
Age, y					
≤60 (<i>I</i> ² = 0%)	72/338	141/483	0.67 (0.48-0.94)		42.7
>60 (l ² = 49.7%)	150/339	284/541	0.69 (0.51-0.93)		57.3
Sex					
Female (1 ² = 0%)	60/202	106/286	0.66 (0.43-0.99)		27.4
Male (I ² = 14.7%)	162/476	319/739	0.66 (0.51-0.84)	— — —	72.6
Symptomatic, d					
≤7 (<i>l</i> ² = 69.1%)	51/130	99/211	0.63 (0.39-1.04)		22.4
>7 (l ² =0%)	139/418	293/693	0.64 (0.49-0.83)		77.6
				0.2 1	2
				Odds ratio (95% CI)	

Date of download: 10/16/2020

Copyright 2020 American Medical Association. All Rights Reserved.

agents

IL-6 inhibitors

NIH COVID-19 Treatment Guidelines Last Updated: August 27, 2020

Interleukin (IL)-6 is a pleiotropic, pro-inflammatory cytokine produced by a variety of cell types, including lymphocytes, monocytes, and fibroblasts. Infection by the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) induces a dose-dependent production of IL-6 from bronchial epithelial cells.¹ COVID-19-associated systemic inflammation and hypoxic respiratory failure can be associated with heightened cytokine release, as indicated by elevated blood levels of IL-6, Creactive protein (CRP), D-dimer, and ferritin.²⁻⁴It is hypothesized that modulating the levels of IL-6 or its effects may alter the course of disease.

There are two classes of Food and Drug Administration (FDA)approved IL-6 inhibitors: anti-IL-6 receptor monoclonal antibodies (e.g., sarilumab, tocilizumab) and anti-IL-6 monoclonal antibodies (siltuximab). These classes of drugs have been evaluated for the management of patients with COVID-19 who have systemic inflammation. The COVID-19 Treatment Guidelines Panel's (the Panel's) recommendations and clinical data to date are described below.

Recommendation

The Panel **recommends against** the use of anti-IL-6 receptor monoclonal antibodies (e.g., **sarilumab**, **tocilizumab**) or anti-IL-6 monoclonal antibody (**siltuximab**) for the treatment of COVID-19, except in a clinical trial (**BI**).

agents

IL-6 inhibitors

NIH COVID-19 Treatment Guidelines Last Updated: August 27, 2020

Interleukin (IL)-6 is a pleiotropic, pro-inflammatory cytokine produced by a variety of cell types, including lymphocytes, monocytes, and fibroblasts. Infection by the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) induces a dose-dependent production of IL-6 from bronchial epithelial cells.¹ COVID-19-associated systemic inflammation and hypoxic respiratory failure can be associated with heightened cytokine release, as indicated by elevated blood levels of IL-6, Creactive protein (CRP), D-dimer, and ferritin.²⁻⁴It is hypothesized that modulating the levels of IL-6 or its effects may alter the course of disease.

There are two classes of Food and Drug Administration (FDA)approved IL-6 inhibitors: anti-IL-6 receptor monoclonal antibodies (e.g., sarilumab, tocilizumab) and anti-IL-6 monoclonal antibodies (siltuximab). These classes of drugs have been evaluated for the management of patients with COVID-19 who have systemic inflammation. The COVID-19 Treatment Guidelines Panel's (the Panel's) recommendations and clinical data to date are described below.

Recommendation

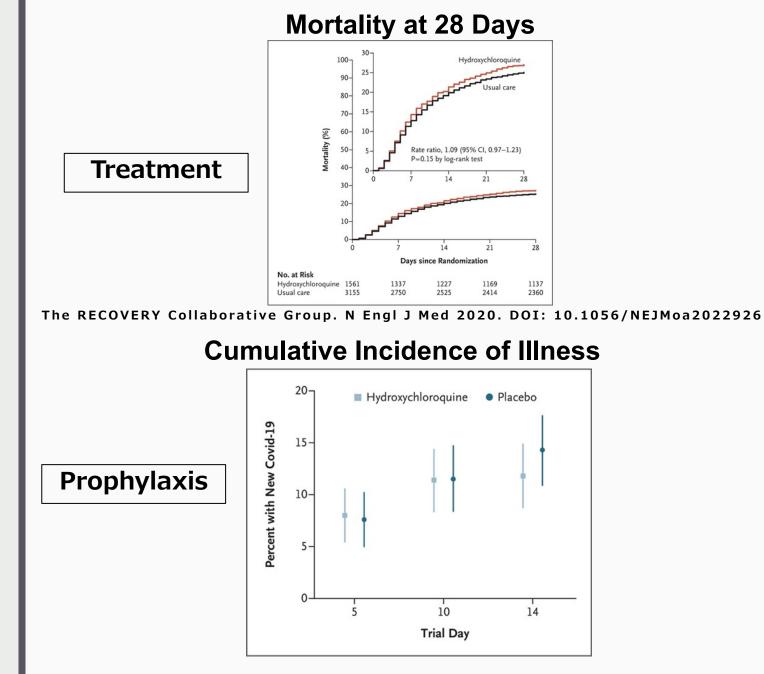
The Panel **recommends against** the use of anti-IL-6 receptor monoclonal antibodies (e.g., **sarilumab**, **tocilizumab**) or anti-IL-6 monoclonal antibody (**siltuximab**) for the treatment of COVID-19, except in a clinical trial (**BI**).

agents

Emerging agents

 Baricitinib (JAK1/2 inhibitor) – ACTT-2

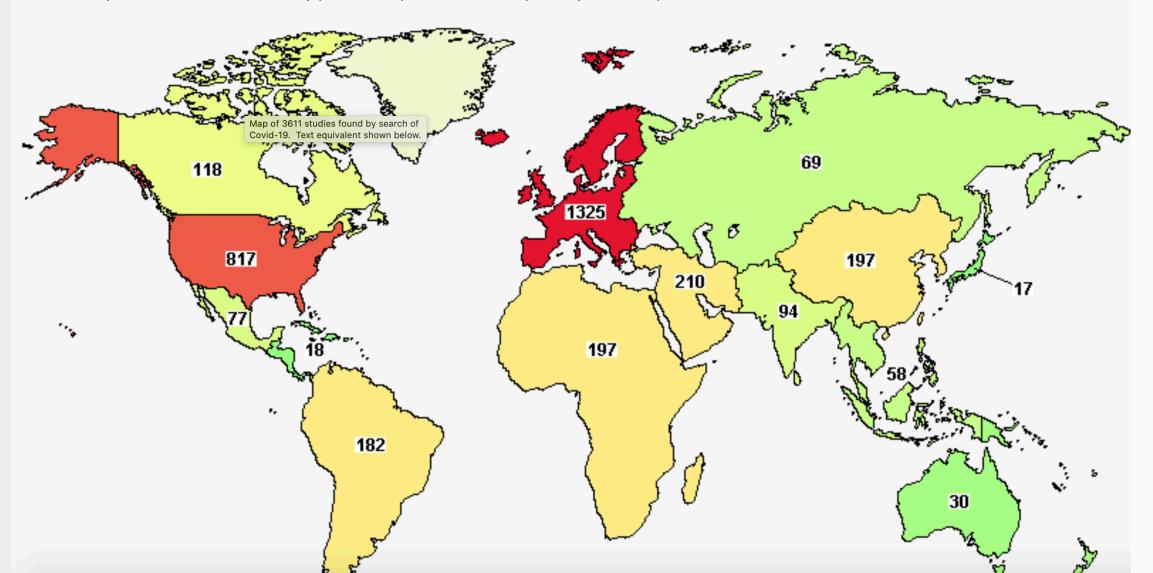
Repurposed


medicines

- Hydroxychloroquine
- Chloroquine
- Azithromycin
- Zinc
- Vitamin D
- Ivermectin
- Lopinavir/ritonavir

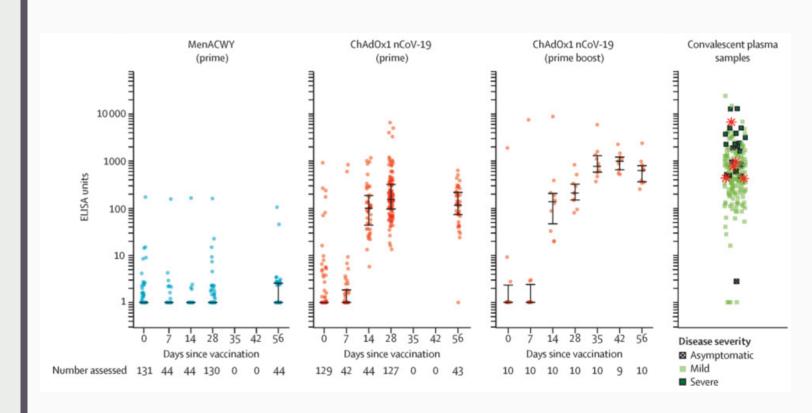
Repurposed

medicines

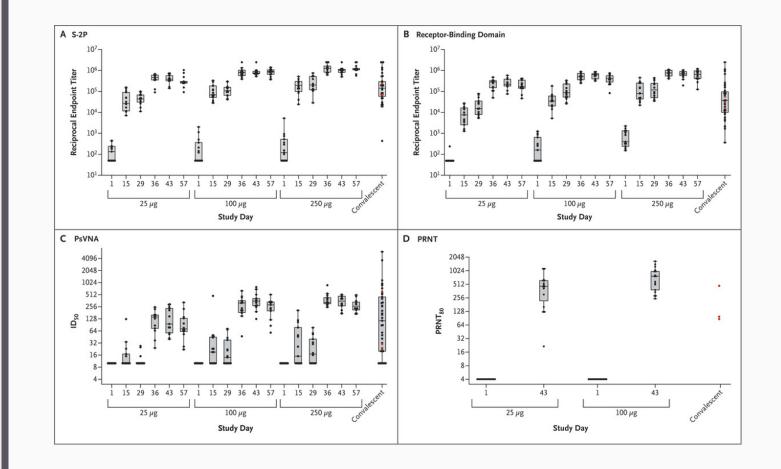

Hydroxychloroquine

DR Boulware et al. N Engl J Med 2020;383:517-525.

Therapeutic trials for SARS-CoV-2 Infection

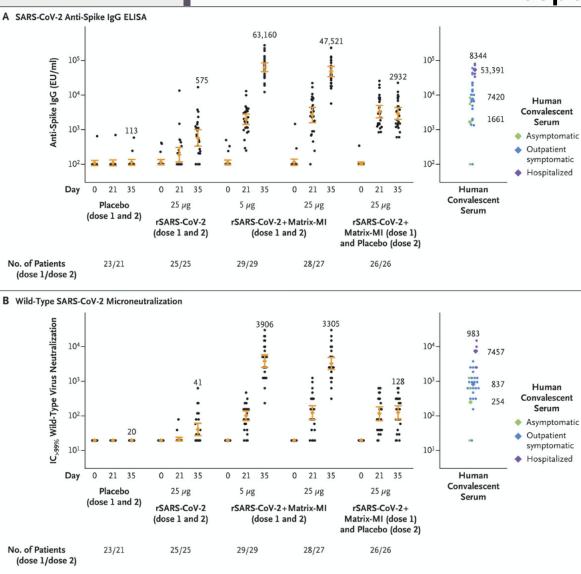

Lick on the map below to show a more detailed map (when available) or search for studies (when map not available).

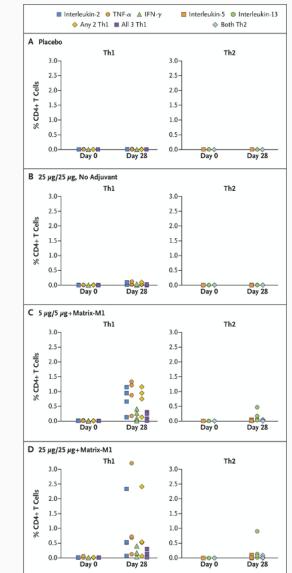
VACCINES


VACCINES

Folegatti, Lancet, 2020

VACCINES

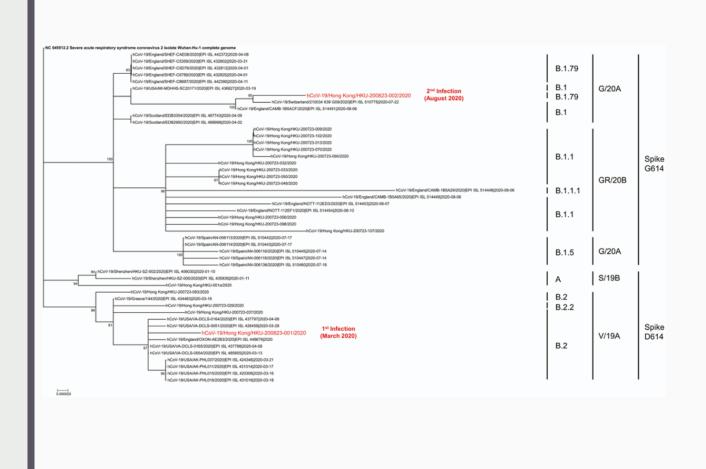

SARS-CoV-2 Antibody and Neutralization Responses



LA Jackson et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2022483

trene wengland Journal of Medicine

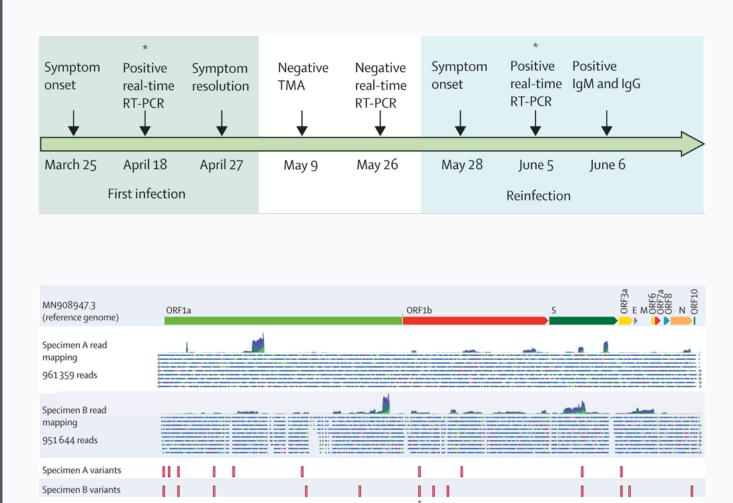
SARS-CoV-2 Anti-Spike IgG and Neutralizing Antibody Responses


VACCINES

C Keech et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2026920

exposure protective?

exposure protective?



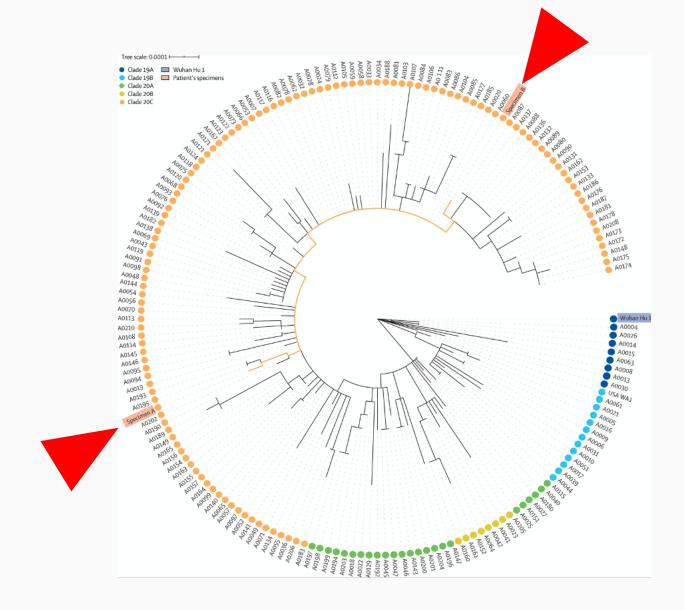
Clin Infect Dis, ciaa1275, https://doi.org/10.1093/cid/ciaa1275

The content of this slide may be subject to copyright: please see the slide notes for details.

exposure protective?

10 000

20000


25 000

15000

5000

The Lancet Infectious Diseases DOI: (10.1016/S1473-3099(20)30764-7)

exposure protective?

The Lancet Infectious Diseases DOI: (10.1016/S1473-3099(20)30764-7)

- no signs that transmission is slowing down on its own
- no evidence of an 'herd immunity' effect
- how important is airborne transmission?
- Diagnostics
- RNA testing is the gold standard
- Antibody testing has variable accuracy
- Antigen testing requires improvements
- Testing needs to keep pace with the pandemic
- Home testing?
- Therapeutics
- Some progress with antivirals and immunomodulatory agents
- No magic bullet (yet)
- Repurposed drugs have been disappointing
- Adaptive platforms and trials infrastructure has been encouraging
- Vaccines
- Several show promising antibody and T cell responses
- Concerns about the speed of development (safety?)
- Re-infection data is sobering, but not sufficient to prove that vaccines will not work

- no signs that transmission is slowing down on its own
- no evidence of an 'herd immunity' effect
- how important is airborne transmission?
- Diagnostics
- RNA testing is the gold standard
- Antibody testing has variable accuracy
- Antigen testing requires improvements
- Testing needs to keep pace with the pandemic
- Home testing?
- Therapeutics
- Some progress with antivirals and immunomodulatory agents
- No magic bullet (yet)
- Repurposed drugs have been disappointing
- Adaptive platforms and trials infrastructure has been encouraging
- Vaccines
- Several show promising antibody and T cell responses
- Concerns about the speed of development (safety?)
- Re-infection data is sobering, but not sufficient to prove that vaccines will not work

- no signs that transmission is slowing down on its own
- no evidence of an 'herd immunity' effect
- how important is airborne transmission?
- Diagnostics
- RNA testing is the gold standard
- Antibody testing has variable accuracy
- Antigen testing requires improvements
- Testing needs to keep pace with the pandemic
- Home testing?
- Therapeutics
- Some progress with antivirals and immunomodulatory agents
- No magic bullet (yet)
- Repurposed drugs have been disappointing
- Adaptive platforms and trials infrastructure has been encouraging
- Vaccines
- Several show promising antibody and T cell responses
- Concerns about the speed of development (safety?)
- Re-infection data is sobering, but not sufficient to prove that vaccines will not work

- no signs that transmission is slowing down on its own
- no evidence of an 'herd immunity' effect
- how important is airborne transmission?
- Diagnostics
- RNA testing is the gold standard
- Antibody testing has variable accuracy
- Antigen testing requires improvements
- Testing needs to keep pace with the pandemic
- Home testing?
- Therapeutics
- Some progress with antivirals and immunomodulatory agents
- No magic bullet (yet)
- Repurposed drugs have been disappointing
- Adaptive platforms and trials infrastructure has been encouraging
- Vaccines
- Several show promising antibody and T cell responses
- Concerns about the speed of development (safety?)
- Re-infection data is sobering, but not sufficient to prove that vaccines will not work

Acknowledgements

David L. Thomas

Mark S. Sulkowski

Arturo Casadevall

Stuart C. Ray

Contact

abalago1@jhmi.edu

Μ

F

