# The Radiological Research Accelerator Facility

## From A-Bombs to microbeams

Guy Garty, Associate Director, RARAF

#### COLUMBIA

RADIATION Oncology





CENTER FOR RADIOLOGICAL RESEARCH

No FCOI

## Who are we?

• RARAF is a multidisciplinary accelerator facility

designed for the delivery of known quantities of radiation

- to biological samples
- using neutrons and ion beams
- 5 physicists, 3 biologists

COLUMBIA

 Beam energies much lower than NSRL but well suited to radiobiology

RADIATION

ONCOLOGY

Accelerator dedicated to radiobiology Welcomes outside experimenters!





# **Our Accelerator**

- 5.5 MV Singletron
- Neutrons
- Hydrogen/helium beams
- Broad beams (35 mm)
- Microbeams (1 µm)

COLUMBIA

Coming soon:
 Heavier ions
 Higher energies
 High dose rate electrons

RADIATION

ONCOLOGY

Accelerator dedicated 100% to radiobiology Welcomes outside experimenters!





# **RARAF** facilities

- Fully equipped biology lab
- Satellite mouse facility
- High end imaging facilities
  Regular fluorescence
  - Regular fluorescence
  - Multiphoton
  - SCAPE microscopy
    - Swept, Confocally-Aligned Planar Excitation
    - ✤ 3D in vivo imaging

Accelerator dedicated 100% to radiobiology Welcomes outside experimenters!





RADIATION ONCOLOGY



#### Research at RARAF









#### Need for a dedicated facility for radiobiology and microdosimetry of monoenergetic neutr<u>ons</u>



*Dr. Harald H. Rossi*, Director Radiological Research Laboratory Columbia University

COLUMBIA

RADIATION

ONCOLOGY





*Dr. Victor P. Bond,* Associate Director Brookhaven National Laboratory

Collaboration between Columbia University and Brookhaven National Laboratory (BNL) Commissioned April 1<sup>st</sup>,1967 Moved to Nevis labs ~1980



# **Monoenergetic neutrons**

- 0.2 to 14 MeV neutrons generated using
  T(p,n), T(d,n) reactions
  Adjusting relative energy and angle to target
- Today used mainly for physics
  Background Calibration for Xe-100 kg

$$E_n = E_p \frac{m_g m_n}{\left(m_n + m_r\right)^2} \left\{ 2\cos^2\vartheta + \frac{m_r \left(m_r + m_n\right)}{m_g m_n} \left[ \frac{Q}{E_p} + 1 - \frac{m_g}{m_r} \right] + 2\cos\vartheta \sqrt{\cos^2\vartheta + \frac{m_r \left(m_r + m_n\right)}{m_g m_n}} \left[ \frac{Q}{E_p} + 1 - \frac{m_g}{m_r} \right] \right\} \right\}$$

Bubble detectors

COLUMBIA

Scintillator for Mars Curiosity Rover

RADIATION

ONCOLOGY





# **CINF: The Columbia IND Neutron Facility**

- Designed to model neutron exposures from an improvised nuclear device explosive
  - Gun type device
  - Up to 30% of dose due to MeV neutrons

RADIATION

ONCOLOGY



Eastwise Ground Distance (km)

COLUMBIA

- Aims
  - Irradiate Mice/blood/cells
  - To develop biodosimetry assays
  - To test radiation countermeasures

Kramer et al, Monte-Carlo Modeling of the Initial Radiation Emitted by a Nuclear Device in the National Capital Region DTRA-TR-13-045 (R1)



Gun barrel

Cylinder

target

Hollow uranium

"bullet"

# **CINF: The Columbia IND Neutron Facility**

- How we do it?
  - Samples are mounted on a rotating irradiation fixture
  - Generate neutrons by H<sup>+</sup>/D<sup>+</sup> on Beryllium
  - Using multiple simultaneous reactions

RADIATION

ONCOLOGY

<sup>9</sup>Be(p,n) & <sup>9</sup>Be(d,n) Low energy & ∜High energy

- Spectrum approximates hiroshima
- Dose rate > 5cGy/min (3 Gy/h)
- Can also simulate microgravity
- Daily traceable dosimetry

COLUMBIA







#### Research at RARAF

COLUMBIA

RADIATION ONCOLOGY





## What is a Single-Cell Microbeam?

A single-cell microbeam can deposit ionizing radiation damage in micrometer or sub-micrometer sized regions of cells







## What is a Single-Cell Microbeam?

A single-cell microbeam can deposit ionizing radiation damage in micrometer or sub-micrometer sized regions of cells

Allows investigation of single-particle effects

Allows investigation of various intra-cellular targets Allows investigation of inter-cellular mechanisms of stress response





#### And if you do it right:





Painting "NIH" on a cell nucleus

- GFP-tagged XRCC1 SSB repair foci
- 0.6 μm microbeam

COLUMBIA RADIATION ONCOLOGY



## Proton microbeam-irradiated mouse ear - γ-H2AX





#### Research at RARAF



COLUMBIA RADIATION ONCOLOGY



# Why heavy ions

- High LET
  - Much higher Relative Biological Effectiveness compared to standard modalities
  - Encouraging results from Japan using Carbon ion RT
    - Indications of immune-mediated tumor killing
  - Also relevant for space radiation
    End of track and secondaries

Is Carbon the best option?

COLUMBIA

- Mechanisms not well understood
- Very expensive question
  - Would helium be enough?

RADIATION

ONCOLOGY





A Flexible Platform for Pre-Clinical Studies in Support of Heavy-Ion Radiotherapy

#### Presently, we can produce

- ➢ protons (low LET)
- deuterons (intermediate LET
- helium ions (high LET)

8 – 25 kev/μm), 15 – 40 keV/μm ) 50-160 keV/μm)



#### Coming soon: Heavy Ions

COLUMBIA

C,B,N, Be/Li (very high LET)

200 – 900 keV/µm)



RADIATION

ONCOLOGY







# Operation of DREEBIT ion source



RADIATION

ONCOLOGY

COLUMBIA

- Gas introduced into ion source
- Electron beam ionizes gas
- Ions trapped in magnetic trap
- Electron beam further ionizes ions
- Trap opened to release stripped ions





#### Bench tests of new ion source



• Can generate fully stripped C,N ions

COLUMBIA

• Working on other ions between He and C

RADIATION

ONCOLOGY

#### Available beams

COLUMBIA

Using our existing 5.5 MeV (2.75 MeV/AMU) accelerator we can only deliver high LET radiation to cell monolayers



RADIATION

ONCOLOGY

#### the interesting biology happens in 3D systems







COLUMBIA



RADIATION ONCOLOGY

#### the interesting biology happens in 3D systems





# We need more energy

> A Linac booster will get our ion energy up to 5.5 MeV/amu

Alternating field accelerates bunches of ions as they pass between the rings.





# Last pre-COVID photos of linac

• Mostly manufactured – expected delivery this summer.









# Available beams with linac booster



- Will allow irradiation of thin tissues
- Window tumors





RADIATION Oncology

COLUMBIA

# Summary

- RARAF is a dedicated radiobiological accelerator facility
- We provide:

|                 | Neutrons       | H+/D+ | Не | Heavy Ions | High dose rate |
|-----------------|----------------|-------|----|------------|----------------|
| Cell Monolayers |                | .1    |    | Summer     | Protons now    |
| Thin Tissues    | NON End of 202 |       |    |            | Electrons this |
| Mice            |                |       |    | 20         | Summer         |

- Experiments typically scheduled month by month
  - contact me or <u>RARAF@columbia.edu</u>
  - Fill out beam time application at <u>www.raraf.org</u>







**NATIONAL CANCER INSTITUTE** 



National Institute of Biomedical Imaging and Bioengineering





