Integrating Evidence-Based Pediatric Prehospital Protocols into Practice
EMSC Targeted Issues Grant #H34MC19347
Children with Respiratory Distress Prehospital Protocol
Evidence-Based Practice Summary

ASK THE QUESTION

Question 1: In children with respiratory distress, which validated respiratory assessment tools can be used in the prehospital setting?

Question 2: In children with respiratory distress, is pulse oximetry sufficient in monitoring a child’s respiratory status in the prehospital setting?

a. In children with respiratory distress, should pulse oximetry be routinely used?

b. In children with respiratory distress, what are the limitations of solely utilizing pulse oximetry monitoring?

Question 3: In children with respiratory distress, is pulse oximetry sufficient in monitoring a child’s respiratory status in the prehospital setting?

Question 4: In children with respiratory distress, is the routine application of oxygen in the absence of hypoxia clinically effective?

a. Oxygenation

b. Clinical signs of distress

Question 5: In children with respiratory distress, is it clinically efficacious to use electrocardiogram (ECG) monitoring?

Question 6: In children with respiratory distress, are the following inhaled medications clinically effective:

a. Albuterol
b. Levalbuterol (Xopenex)
c. Ipratropium (Atrovent)
d. Hypertonic saline (3%, 5%)
e. Racemic epinephrine
f. Magnesium sulfate
g. Steam

Question 6a/b: In children with respiratory distress, does the use of inhaled short-acting beta-agonists (i.e., albuterol or levalbuterol) in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Question 6c: In children with respiratory distress, does the use of inhaled anticholinergics (i.e., ipratropium) in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Question 6d: In children with respiratory distress, does the use of inhaled hypertonic saline (i.e., 3% or 5%) in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Question 6e: In children with respiratory distress, does the use of inhaled racemic epinephrine in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Question 6f: In children with respiratory distress, does the use of inhaled magnesium sulfate in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Question 6g: In children with respiratory distress, does the use of inhaled steam in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Question 7: In children with respiratory distress, does the use of intravenous magnesium sulfate in the prehospital setting result in clinical improvement (e.g. decreased stress, shorter ED length of stay, decreased admission rates to the hospital)?

Question 8: In children with respiratory distress in the prehospital setting, is it efficacious (e.g., lead to better clinical outcomes) to place an IV?
Question 9: In children with respiratory distress in the prehospital setting, do steroids (any route) lead to improved clinical outcomes? What is the appropriate timing of steroid administration? What are the indications and contraindications for the use of steroids? What is the preferred route?

Question 10: In children with respiratory distress in the prehospital setting, when are IV fluids clinically effective and useful?

Question 11: In children with respiratory distress in the prehospital setting, does epinephrine (IM/SQ/IV) lead to improved clinical outcomes? What is the appropriate timing of epinephrine use? What are the indications and contraindications for the use of epinephrine?

Question 12: In children with respiratory distress, what are the clinical situations in which the following non-invasive airway adjuncts improve oxygenation and/or respiratory distress:
 a: Continuous positive airway pressure (CPAP)
 b: Bag valve mask ventilation
 c: Heliox

Question 13: In children with respiratory distress in the prehospital setting, do supraglottic devices and intubation lead to improved clinical outcomes? What are the indications and contraindications for using a supraglottic device or intubating?

Question 14: In children with respiratory distress, is the use of capnography efficacious and clinically useful?

Question 15: In children with respiratory distress, are there improved patient outcomes when an online medical direction is contacted versus no online medical direction is contacted?

Question 16: In children with respiratory distress, are there improved patient outcomes when patients are transported by Advanced Life Support (ALS) providers as compared to Basic Life Support (BLS) providers?

Question 17: In children with respiratory distress, is it clinically efficacious to transport with lights and sirens?
CRITICALLY ANALYZE THE EVIDENCE

Question 1: In children with respiratory distress, which validated respiratory assessment tools can be used in the prehospital setting?

Recommendation: Prehospital providers should be taught to assess and document components of the Respiratory Distress Assessment Instrument (RDAI), Pediatric Asthma Severity Score (PASS), and Westley Croup respiratory scores.

Grade Criteria: Strong recommendation, Moderate quality evidence

A review of the literature noted several pediatric respiratory assessment tools used in the emergency department and outpatient setting. No tools were found to be exclusively used or developed in the prehospital setting. Four clinical scores showed high interrater reliability, predictability, and scientific acceptance in the literature by stakeholders and providers for common respiratory diseases (asthma, bronchiolitis, and croup). These scores have been replicated in larger, scientifically accepted studies as outcome measurements to demonstrate clinical improvement after therapies. No universal scoring system was found to assess children with respiratory distress for multiple disease processes (i.e., asthma, bronchiolitis, croup).

The RDAI, originally developed in 1987, has been subsequently used in many large pediatric emergency department trials to validate respiratory assessments and improvement in bronchiolitis. The original tool was developed in a randomized double blind trial of 30 children < 2 years old, receiving subcutaneous epinephrine for wheezing. The RDAI showed internal validity for three main elements when compared to many other clinical factors, respiratory rate, wheezing and retractions. Interobserver agreement was good between two observers (weighted kappa of 0.9). A Respiratory Assessment Change Score (RACS) was calculated as an absolute difference between two RDAI scores to prove clinical improvement. In this study, a clinical improvement was noted to be a change of RACS of 4 units (clinical significance determined a priori). Other studies using the RDAI to assess bronchiolitis have simply measured the average change in RACS as a continuous variable to compare improvement in clinical status from intervention versus another.

Although the RDAI is quoted in some reviews as an asthma score, it has only been used in clinical trials for children < 2 years old with wheezing, more likely bronchiolitis than asthma. However, no studies could be found that validated the RDAI as an assessment tool in different populations.

Over half a dozen clinical scores for asthma have been developed in the outpatient setting. A meta-analysis in 2004 of respiratory distress scores for preschool children highlighted the lack of validation, rigorous evaluation, and interobserver agreement when comparing 10 different scores. The PASS and the Preschool Respiratory Assessment Instrument (PRAM) are the only two that showed consistent internal validity, usefulness along age ranges, and easy implementation.

Gorelick et al. (2004) examined 5 clinical factors in 1221 asthma subjects of varying severity. Subset analyses were done on 5-, 4-, and 3-item scales. A 3-item scale looking at wheezing, work of breathing, and prolonged expiration showed good performance. High interrater reliability (kappa 0.79), construct validity (degree to which a score correlates with other accepted measures of severity), discriminative validity (c stat of 0.8 or more on ROC curve), and good responsiveness (% change in score and difference between admitted and discharged patients) were all shown. In addition, this score was validated among different providers and varying severities of asthma, as opposed to many other scores found in the literature.

Chalut et al. (2000) performed a prospective cohort study of 217 children < 6 years old with a diagnosis of asthma. A derivation and validation group found a 5-factor scale including suprasternal retraction, scapular retractions, air entry, wheezing and pulse oximetry to have the best interrater reliability, predictiveness, and responsiveness. It should be of note that the score excluded patients with severe asthma and children > 6 years old.

Over a dozen clinical croup scores have been reported in the literature. However, the Westley croup score is by far the most utilized, reproduced, and validated croup score for emergency department and outpatient evaluation in the literature. The Westley croup score is the most common primary outcome used to measure interventions directed at croup. No online access was available to analyze the original study and its validated measurements for this score. The Westley croup score is a 17-point score looking at stridor, retractions, air entry, cyanosis, and level of consciousness.

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347
Recommendation(s): Strong recommendation with moderate quality evidence that prehospital providers should be taught to assess and document components of the RDAI, PASS, and Westley scales in patients age 1 to 5 years old with wheezing of moderate or greater severity.

Number of Studies: Total # 5

Design
- Systematic review
- RCT (2,4,5)
- Cohort (1,3)
- Observational
- Case Reports
- Publication Bias Evident: Yes
- Yes

Summary of Consistency

Design Limitations
- None
- Insufficient sample size (1,4)
- Lack of blinding (1,3,5)
- Lack of allocation concealment (1,2,3)
- Large losses to F/U
- Incorrect analysis of ITT
- Stopped early for benefit
- Selective reporting of measured outcomes (e.g., no effect outcome)

Summary of Indirectness of Comparison
- Head-to-head comparison in correct population
- Indirect comparisons (e.g., interventions to placebo but not each other)
- Different populations (1-5)
- Different interventions (1-5)
- Different outcomes measured (1-5)
- Comparisons not applicable to question/outcome

Imprecision of Results
- Dichotomous outcomes
- Sample size lower than calculated optimal information size
- Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes
- 95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm

Sample

<table>
<thead>
<tr>
<th>CI/RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 281 excluded patients couldn’t perform resistance test or were too sick. Group of 142 to develop score, validated in another 78. In the test group, the model was modestly discriminative ($r^2 = 0.16$, P = .001) and responsive ($r^2 = 0.13$, P = .05). The association between the % of predicted Rfo8 and severity appraisal was stronger for physicians ($r = 0.32$) than for nurses ($r = 0.15$). A PRAM score was about as predictive for airway obstruction as a physician assessment of severity. No kappa reported – only one trained nurse did assessment. Because of so few children with severe asthma, they could not determine expected obstruction for a PRAM score of ≥ 0.5.</td>
</tr>
<tr>
<td>2) RDAI score determined by one research assistant at each site. RDAI already previously validated in other studies. RACS score difference not significant between two groups, -0.5 (95%CI: -1.3 to 0.3), also no significant difference when RACs values were analyzed in the subgroup with eczema or a family history of asthma (absolute difference, -0.4; 95% CI, -1.3 to 0.6).</td>
</tr>
<tr>
<td>3) Kappa of 0.79 between observers, observers varied in training (MD, RN, RT), kappa scores were higher for people of like training (0.83). Scores showed modest correlation with construct validity items – Pearson correlation coefficient with pulse ox: -0.42 (-0.36, -0.47) and with PEFR -0.22 (-0.05, -0.37); all scores were higher with decreasing PEFR for sats < 93% and for admitted patients.</td>
</tr>
</tbody>
</table>

Implications

- RCT of 20 patients looking at improvement of clinical croup score in inpatients receiving saline vs. epinephrine (nebulized and by IPPV).

Additional References:

2. In children with respiratory distress, what are the limitations of solely utilizing pulse oximetry monitoring?

Recommendation: Pulse oximetry should be routinely used in children with respiratory distress as an adjunct to other forms of respiratory monitoring.

Grade Criteria: Strong recommendation, Low quality evidence

A review of the literature noted a limited number of studies assessing pulse oximetry’s limits in the clinical setting. A few studies looked at how predictive pulse oximetry was by itself for certain clinical outcomes. Mehta et al. (2004) looked at how well pulse oximetry could predict children needing bronchodilators for more than 4 hours. An LR > 10 is deemed clinically significant to change pre-test to post-test probability of an outcome. In this study, only at an initial sat of < 89% did LR get to 12.3 (1.7, 90.1) to predict need for frequent bronchodilator for > 4 hours, and an LR of 9.8 (3.4, 29.5) to predict FBT > 12 hours. Although this may be looked at as being clinically useful, only 15% of patients had a sat of < 91% so it is likely not a sufficient predictor alone for most asthmatics in the ED. Keahey et al. (2002) showed that as a predictor for hospital admission, pulse oximetry was not sufficient in predicting admission. In this study, the patient needed a sat of < 88% to have an LR of 12 to predict admission. LR decreased to 2.7 for patients with a sat of 94% or less. With a mean pulse oximetry of 93% for admitted patients, this again showed that as a sole predictor for hospital admission, pulse oximetry is not sufficient for most asthmatics presenting for emergency care.

Recommendation: Strong recommendation with low quality evidence that pulse oximetry should be routinely used in children with respiratory distress, but is not sufficient on its own.

Design Limitations

<table>
<thead>
<tr>
<th>None</th>
<th>Insufficient sample size</th>
<th>Lack of randomization</th>
<th>Lack of allocation concealment</th>
<th>Large losses to F/U</th>
<th>Incorrect analysis of ITT</th>
<th>Stopped early for benefit</th>
<th>Selective reporting of measured outcomes (e.g., no effect outcome)</th>
</tr>
</thead>
</table>

Summary of Consistency

<table>
<thead>
<tr>
<th>No inconsistencies</th>
<th>Wide variation of treatment effect across studies</th>
<th>Populations varied (e.g., sicker, older)</th>
<th>Interventions varied (e.g., doses)</th>
<th>Outcomes varied (e.g., diminishing effect over time)</th>
</tr>
</thead>
</table>

Indirectness of Comparison

<table>
<thead>
<tr>
<th>Head-to-head comparison in correct population</th>
<th>Indirect comparisons (e.g., interventions to placebo but not each other)</th>
<th>Different populations</th>
<th>Different interventions</th>
<th>Different outcomes measured</th>
</tr>
</thead>
</table>

Imprecision of Results

<table>
<thead>
<tr>
<th>Dichotomous outcomes</th>
<th>Sample size lower than calculated</th>
<th>Optimal information size</th>
<th>Total # of events is > 300 based on simulations & dependent on baseline</th>
<th>Risk & effect sizes</th>
<th>85% CI (or alternate measure) includes negligible effect and appreciable benefit or harm</th>
</tr>
</thead>
</table>

Number of Studies: Total # = 2 |
Systematic review: Yes
RCT: No
Cohort: Yes
Observational: No
Publication Bias: Evident
Yes
No

Sample

<table>
<thead>
<tr>
<th>Design</th>
<th>Description</th>
<th>CI/RR</th>
</tr>
</thead>
</table>
| 1
| N = 1184; Prospective multicenter study (part of the Multicenter Airway Research Collaboration). Inclusion criteria: acute asthma, age 2-17 years. The association between hospital admission and SaO₂ was examined by using logistic regression. Likelihood ratios were used to assess the diagnostic value of SaO₂. |
| 2
| N = 273; Prospective cohort study. Univariate logistic regression of a prior postulated plausible predictors of prolonged FBT for > 4 hours and for > 12 hours, and then a multiple logistic regression analysis. |
| 1
| Despite sicker population (57% had been admitted before), only 40% on preventer meds SaO₂ 88% or less were 9 times more likely to get admitted than a sat of 100% (CI: 2.2, 36.8). Only at a sat of 88% did an LR approach a clinically useful level (LR = 12, no CI reported). ROC curve for pulse ox as predictor for admission: 0.76. Since 88% of these patients had SaO₂ > 91%, this cutoff was not clinically useful. 92% would be ideal point based on ROC curve but a very poor predictor in this study. 58% of those with SaO₂ < 92% were actually sent home so by itself is a poor predictor to determine admission. |
| 2
| LR > 10 or greater were considered clinically significant (how test – pulse ox, changes pre- to post-test probability of an outcome). As the initial SaO₂ increased, the odds of treatment for > 4 hours decreased (OR = 0.73; 95% CI: 0.6, 0.82). After multiple logistic regression analyses, the SaO₂ remained a significant independent predictor of both the > 4-hour therapy (OR = 0.81; 95% CI: 0.71, 0.92) and > 12-hour therapy (OR = 0.84; 95% CI: 0.75, 0.94). Children with the initial SaO₂ < 91% were: 14.7 times (adjusted OR 14.8; CI: 2.3, 93.4) more likely to require FBT for > 4 hours: LR 6.5 (1.5, 27) 12 times (adjusted OR of 11.8; 95% CI: 1.2, 113.8) more likely to require FBT for > 12 hours than children with SaO₂ between 98% and 100%; LR 3.5 (1.6, 8). |

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347

DATE: July 2011
ROC for SaO_2 as a predictor for FBT > 4 hours (AUC = 0.70), FBT > 12 hours (AUC = 0.73)

Authors concluded that baseline $\text{SaO}_2 < 91\%$ in acute asthma can be a helpful predictor of prolonged FBT for > 4 hours and that $\text{SaO}_2 < 89\%$ is strongly associated with FBT for > 12 hours.

Authors conclude that as a sole measurement, pulse ox not good enough to predict admission.

Question 3: In children with respiratory distress, is it clinically efficacious to use electrocardiogram (ECG) monitoring?

Recommendation: ECG should not be routinely used for children with respiratory distress. If there are no signs of clinical improvement after treating the respiratory distress, consider ECG monitoring to assess for cardiac concerns.

Grade Criteria: Weak recommendation, Very low quality evidence

Freedman et al. (2007) found that children with myocarditis present with symptoms that can often be mistaken for other types of illnesses. Thirty-two percent of patients (N = 10) presented with predominantly respiratory symptoms followed closely by 29% of patients (N = 9) with cardiac symptoms and 6% (N = 2) with gastrointestinal symptoms. In this study, 14 children had previously been seen by a physician before being diagnosed with myocarditis and of those, 57% were originally diagnosed with pneumonia or asthma. Findings suggesting cardiac dysfunction were present in 17 of 31 chest radiographs (sensitivity: 55%; 95% CI: 38, 71). ECG findings potentially indicating myocarditis were reported in 93% of cases (95% CI: 78, 99).

Recommendation: Weak recommendation with very low quality evidence that ECG should not be routinely used for children with respiratory distress. If there are no signs of clinical improvement after treating the respiratory distress, consider ECG monitoring to assess for cardiac concerns.

Number of Studies: Total #1 Systematic review RCT Cohort Observational Case Reports Publication Bias Evident Yes No

<table>
<thead>
<tr>
<th>Design Limitations</th>
<th>Summary of Consistency</th>
<th>Indirectness of Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No inconsistencies</td>
<td>Head-to-head comparison in correct population</td>
</tr>
<tr>
<td>Insufficient sample size</td>
<td>Wide variation of treatment effect across studies</td>
<td>Indirect comparisons (e.g., interventions to placebo but not each other)</td>
</tr>
<tr>
<td>Lack of blinding</td>
<td>Populations varied (e.g., sicker, older)</td>
<td>Different populations</td>
</tr>
<tr>
<td>Lack of allocation concealment</td>
<td>Interventions varied (e.g., doses)</td>
<td>Different interventions</td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td>Outcomes varied (e.g., diminishing effect over time)</td>
<td>Different outcomes measured</td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td></td>
<td>Comparisons not applicable to question/outcome</td>
</tr>
<tr>
<td>Stopped early for benefit</td>
<td></td>
<td>Dichotomous outcomes</td>
</tr>
<tr>
<td>Selective reporting of measured outcomes (e.g., no effect outcome)</td>
<td></td>
<td>Sample size lower than calculated optimal information size</td>
</tr>
</tbody>
</table>

Imprecision of Results

Dichotomous outcomes

Sample size lower than calculated optimal information size

Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes

95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm

Sample

1) N = 31 children diagnosed with myocarditis who initially presented to the ED (8.0 ± 6.4 years)
16 cases of definite myocarditis; 15 cases of probable myocarditis

1) 32% of (10) patients presented with predominantly respiratory symptoms followed closely by 29% (9) with cardiac symptoms and 6% (2) with gastrointestinal symptoms. 14 children had previously been seen by a physician before being diagnosed with myocarditis and of those, 57% were originally diagnosed with pneumonia or asthma. Cardiac dysfunction was present in 17/31 chest radiographs (sensitivity: 55%; 95% CI: 38, 71%). ECG findings potentially indicating myocarditis were reported in 93% of cases (95% CI: 78, 99).

Question 4: In children with respiratory distress, is the routine application of oxygen in the absence of hypoxia clinically effective?

Recommendation: Supplemental oxygen should be provided to all children with respiratory distress.

Grade Criteria: Strong recommendation, Very low quality evidence

Fifty-seven percent of the respondents (members of the American Academy of Pediatrics Section of Emergency Medicine) in the survey reported using supplemental oxygen in children with bronchiolitis.

Recommendation: Strong recommendation with very low quality evidence that supplemental oxygen should be provided to all children with respiratory distress.

<table>
<thead>
<tr>
<th>Number of Studies:</th>
<th>Total # 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Limitations</td>
<td>Summary of Consistency</td>
</tr>
<tr>
<td>None</td>
<td>No inconsistencies</td>
</tr>
<tr>
<td>Insufficient sample size</td>
<td>Wide variation of treatment effect across studies</td>
</tr>
<tr>
<td>Lack of blinding</td>
<td>Populations varied (e.g., sicker, older)</td>
</tr>
<tr>
<td>Lack of allocation concealment</td>
<td>Interventions varied (e.g., doses)</td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td>Outcomes varied (e.g., diminishing effect over time)</td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td></td>
</tr>
<tr>
<td>Stopped early for benefit</td>
<td></td>
</tr>
<tr>
<td>Selective reporting of measured outcomes (e.g., no effect outcome)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indirectness of Comparison</th>
<th>Imprecision of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head-to-head comparison in correct population</td>
<td>Dichotomous outcomes</td>
</tr>
<tr>
<td>Indirect comparisons (e.g., interventions to placebo but not each other)</td>
<td>Sample size lower than calculated optimal information size</td>
</tr>
<tr>
<td>Different populations</td>
<td>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</td>
</tr>
<tr>
<td>Different interventions</td>
<td>Different outcomes measured</td>
</tr>
<tr>
<td>Different outcomes measured</td>
<td>Comparisons not applicable to question/outcome</td>
</tr>
</tbody>
</table>

Sample

1. Physicians who were members of the American Academy of Pediatrics Section of Emergency Medicine and lived in the United States were randomized into 4 groups and sent a survey that contained one of four vignettes. The vignettes were identical with the exception of given SpO2 values (94% or 92%) and RR (50/min or 62/min). Subjects were asked to answer questions regarding laboratory tests, treatment options, and the decision to admit for the patient in their vignette with bronchiolitis. 519 surveys were returned from the 812 physicians contacted (64%).

1) 57% of the respondents recommended supplemental oxygen.
Question 5: In children with respiratory distress, is airway suctioning effective in improving:

5a. Oxygenation

5b. Clinical signs of distress

Recommendation: A child’s nose and/or mouth should be suctioned (via bulb, Yankauer, suction catheter) if excessive secretions are present.

Grade Criteria: Strong recommendation, Very low quality evidence

Eighty-two percent of respondents in the survey reported removing nasal secretions for therapeutic reasons.

Recommendation:

Strong recommendation with very low quality evidence that a child’s nose and/or mouth should be suctioned (via bulb, xxx, xxx) if excessive secretions are present.

Grade Criteria:

Strong recommendation, Very low quality evidence

Number of Studies:

Total # 1

- Systematic review/Meta-analysis
- RCT
- Cohort
- Observational
- Case Reports
- Publication Bias Evident: Yes

Design Limitations

<table>
<thead>
<tr>
<th>None</th>
<th>Insufficient sample size</th>
<th>Lack of blinding</th>
<th>Lack of allocation concealment</th>
<th>Large losses to F/U</th>
<th>Incorrect analysis of ITT</th>
<th>Stopped early for benefit</th>
<th>Selective reporting of measured outcomes (e.g., no effect outcome)</th>
</tr>
</thead>
</table>

Summary of Consistency

<table>
<thead>
<tr>
<th>Head-to-head comparison in correct population</th>
<th>Indirect comparisons (e.g., interventions to placebo but not each other)</th>
<th>Different populations</th>
<th>Different interventions</th>
<th>Different outcomes measured</th>
<th>Comparisons not applicable to question/outcome</th>
</tr>
</thead>
</table>

Indirectness of Comparison

<table>
<thead>
<tr>
<th>Dichotomous outcomes</th>
<th>Sample size lower than calculated optimal information size</th>
<th>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</th>
<th>95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm</th>
</tr>
</thead>
</table>

Imprecision of Results

| 1) Physicians who were members of the American Academy of Pediatrics Section of Emergency Medicine and lived in the United States were randomized into 4 groups and sent a survey that contained one of four vignettes. The vignettes were identical with the exception of given SpO2 values (94% or 92%) and RR (50/min or 62/min). Subjects were asked to answer questions regarding laboratory tests, treatment options, and the decision to admit for the patient in their vignette with bronchiolitis. 519 surveys were returned from the 812 physicians contacted (64%). |
| 1) 82% of the respondents recommended the use of suctioning. |

Question 6a/b: In children with respiratory distress, does the use of inhaled short-acting beta-agonists (i.e., albuterol or levalbuterol) in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Recommendation: Beta-agonists should be administered to all children in respiratory distress with signs of bronchospasm (e.g., known asthmatics, quiet wheezers) in the prehospital setting, either via nebulized route or metered-dose inhaler, by basic life support (BLS) or advanced life support (ALS) providers.

Grade Criteria: Strong recommendation, Moderate quality evidence

The use of short-acting beta agonists for respiratory distress in children and adults with known asthma in the emergency department setting is well supported. There is limited literature on its efficacy in the prehospital setting, especially in children, but its routine use for asthma is recommended by expert panel recommendations. Several articles in the prehospital setting, including some with subgroup analysis in children, do note improvements in peak flow and dyspnea when beta-agonists are administered. Though some of these articles note a statistically significant improvement in heart rate or respiratory rate, the clinical relevance of this improvement is questionable based on the magnitude of difference and the lack of reporting of 95% confidence intervals. In an open-label study in adults in the prehospital setting, no difference in effect was noted between levalbuterol and albuterol. The successful administration of nebulized beta-agonists and assessment of bronchospasm by BLS providers in children was noted in 1 study.

For beta agonist use in children < 2 years of age with wheezing and/or bronchiolitis in the hospital setting, no differences in rates of hospital admission, duration of hospitalization, or time to resolution of symptoms existed. There were conflicting conclusions regarding change in oxygen saturation but there were improvements in other clinical parameters (heart rate, respiratory rate, use of accessory muscles, and wheezing) noted in both meta-analyses. Treated patients did have increased incidence of tachycardia and tremors, so this risk should be weighed against potential benefit.

Recommendation: Strong recommendation with moderate quality evidence that beta-agonists should be administered to all children in respiratory distress with signs of bronchospasm (including wheezing) in the prehospital setting, either via nebulized route or metered-dose inhaler, by basic life support (BLS) or advanced life support (ALS) providers.

Number of Studies:

1. Clinical guideline that references evidence-based recommendations by the National Asthma Education and Prevention Program (NAEPP) on the use of short-acting beta agonists in adults and children in the emergency department. The NAEPP recommendations are also incorporated in another article by Camargo in Prehospital Emergency Care in 2006 that makes the same recommendation, specifically for EMS.

2. 6 RCTs on children < 2 years with recurrent wheezing. One was an ED-based study; none were prehospital; others were at home or in pulmonary function lab.

3. 28 RCTs on children < 2 years with bronchiolitis in the hospital setting. Also included ipratropium bromide in some studies.

Design Limitations

- None
- Insufficient sample size
- Lack of blinding
- Lack of allocation concealment
- Large losses to F/U
- Incorrect analysis of ITT
- Stopped early for benefit
- Selective reporting of measured outcomes (e.g., no effect outcome)

Summary of Consistency

- No inconsistencies
- Wide variation of treatment effect across studies
- Populations varied (e.g., sicker, older)
- Interventions varied (e.g., doses)
- Outcomes varied (e.g., diminishing effect over time)

Indirectness of Comparison

- Head-to-head comparison in correct population
- Indirect comparisons (e.g., interventions to placebo but not each other)
- Different populations
- Different interventions
- Different outcomes measured
- Comparisons not applicable to question/outcome

Imprecision of Results

- Dichotomous outcomes
- Sample size lower than calculated optimal information size
- Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes
- 95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm

Sample CI/RR

1. N/A
2. Results from ED based study (Bentur 1992)
 - Respiratory rate: Decrease of 5.1 breaths/min (0.75-9.45)
 - Symptom score (HR, RR, wheeze, accessory muscle use on 0-3 scale): Improvement by 2.5 points (1.12-3.98)
 - Oxygen saturation: Increased 1.6% (0.33-2.87)
 - Hospital admission (OR): 1.95 (0.27-13.98); no difference

Other studies: No benefit observed for any outcomes in the home or other settings
and non-inhaled routes (oral/subcutaneous). Oximetry and clinical score outcomes were heterogeneous; sensitivity analysis performed excluding 1st time wheezers.

4) Prospective cohort of patients with bronchospasm who received nebulized albuterol by an EMT after a 4-hour training course. Pre-/Post-treatment comparisons made evaluating several outcomes. Pediatric data (n = 41/190) is shown to the right. No comparison to placebo.

5) Prospective cohort of patients with bronchospasm who received nebulized albuterol by an EMT after a 4-hour training course. Pre-/Post-treatment comparisons made evaluating several outcomes.

6) Prospective open label study of nebulized levalbuterol administered to ≥ 16 year olds by ALS providers in the prehospital setting. Data analyzed on 147 complete records. No comparison to placebo.

7) Funded by Sepracor (makers of Xopenex). Prospective open label study comparing nebulized levalbuterol to albuterol administered to ≥ 16 year olds by ALS providers in the prehospital setting before and after a protocol change.

Table: Comparison Metrics

Funding

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347.
Question 6c: In children with respiratory distress, does the use of inhaled anticholinergics (i.e., ipratropium) in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Recommendation: Nebulized anticholinergic medication (i.e., ipratropium) should be administered in multiple doses with short-acting beta agonist to children ≥ 2 years of age with known asthma who are in severe respiratory distress in the prehospital setting.

Grade Criteria: Strong recommendation, Moderate quality evidence

The use of inhaled anticholinergics has been evaluated in wheezing children (< 2 years) and known asthmatics (18 months-17 years) in the emergency department and inpatient settings. In the younger age group, there was no improvement in respiratory rate, oxygen saturation, duration of hospital stay, or effect on symptoms in children < 2 years of age who received ipratropium. In children 18 months-17 years, a single dose of ipratropium did not make a difference in reducing the risk of hospital admission or improving pulmonary function tests. In severe asthmatics, however, multiple doses of ipratropium reduced hospital admission rates and improved pulmonary function tests at both 1- and 2-hour intervals after treatment with no increase in nausea, vomiting, or tremors.

Ipratropium use has not been studied in children in the prehospital setting, but one retrospective cohort comparing adult patients before and after the addition of ipratropium to a prehospital reactive airway disease protocol showed no difference in admission rates or vital signs after treatment. This study had several flaws (inadequate sample size, heterogeneous population, adult population, before and after comparison) that makes it difficult to determine whether or not children may benefit from prehospital treatment with ipratropium. Due to the compelling evidence of benefit in the emergency department and inpatient settings for children with severe asthma exacerbations, this higher quality data should be considered in making a recommendation.

Recommendation(s): Strong recommendation with moderate quality evidence that nebulized anticholinergic medication (i.e., ipratropium) should be administered in multiple doses with short acting beta-agonist to children ≥ 2 years of age with known asthma who are in severe respiratory distress in the prehospital setting.

<table>
<thead>
<tr>
<th>Number of Studies: Total #3</th>
<th>Systematic review/Meta-analysis</th>
<th>RCT</th>
<th>Cohort</th>
<th>Observational</th>
<th>Case Reports</th>
<th>Publication Bias Evident</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Limitations</td>
<td>Summary of Consistency</td>
<td>Indirectness of Comparison</td>
<td>Imprecision of Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (1)</td>
<td>No inconsistencies</td>
<td>Head-to-head comparison in correct population</td>
<td>Dichotomous outcomes (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficient sample size</td>
<td>Wide variation of treatment effect across studies</td>
<td>Indirect comparisons (e.g., interventions to placebo but not each other)</td>
<td>Sample size lower than calculated optimal information size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of blinding</td>
<td>Populations varied (e.g., sicker, older) (1,2,3)</td>
<td>Different populations (1,2,3)</td>
<td>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of allocation concealment</td>
<td>Interventions varied (e.g., doses) (2,3)</td>
<td>Different interventions</td>
<td>95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td>Outcomes varied (e.g., diminishing effect over time) (2,3)</td>
<td>Different outcomes measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td>Selective reporting of measured outcomes (e.g., no effect outcome)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stopped early for benefit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample

1) Before/After comparison of ipratropium use for prehospital reactive airway disease in ≥ 18 year olds.

2) 6 RCTs found on children < 2 years with wheezing, excluding patients with bronchiolitis and chronic lung disease. Included studies of patients 1) at home, 2) in the accident/emergency department, and 3) in the hospital who received nebulized or metered dose inhaler ipratropium vs. placebo or beta agonist. Both ED studies (Naspitz 1992, Schuh 1992) used ipratropium with a beta agonist. ED and hospital data noted to the right.

3) 6 RCTs in children (18 months – 17 years) who received a single or multiple doses of ipratropium.

1) Admission rate: 53% vs. 56% (p = 0.596); no difference

- Change in HR: -3 vs. -6 (p = 0.474); no difference
- Change in BP: -7 vs. -10 (p = 0.523); no difference
- Change in RR: 0 vs. -4 (p = 0.055); no difference
- Oxygen saturation: 8 vs. 8 (p = 0.581); no difference

2) Requirement for additional inhaled therapy after 45 minutes (OR): 0.22 (0.08-0.61) in one study; decreased need with ipratropium

- Decrease in respiratory rate: -2.00 (-6.77-2.77); no difference
- Increase in oxygen sat in ED (MD): 0.08 (-0.84-1.00); no difference
- Oxygen sat at discharge or HDD3 (MD): -0.90 (-2.80-1.00); no difference
- Observed response (OR for “excellent response”): 0.86 (0.37-2.47)
- Effect on symptom scores at discharge or HDD3 (MD): 0.65 (-0.29-1.59); no difference
- Effect on duration of hospital stay (MD): -0.4 days (-1.4-0.61); no difference

Date: July 2011

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347
3) Hospital admission (RR): 0.93 (0.65-1.32); no difference (single dose); 0.72 (0.53-0.99); favors ipratropium (multiple dose for severe exacerbations). NNT = 11 (5-250)

| Pulmonary function tests (MD) | at 60 min: -0.57 (-0.93 to -0.21); favors use of ipratropium | at 120 min: 0.53 (-0.90 to -0.17); favors ipratropium |

Adverse effects: nausea: 0.59 (0.30-1.14); vomiting: 1.03 (0.37-2.87); tremor: 1.02 (0.63-1.64); no difference in any adverse effects with multiple doses (or single dose).

Question 6d: In children with respiratory distress, does the use of inhaled hypertonic saline (i.e., 3% or 5%) in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Recommendation: Hypertonic saline should not be administered to children in respiratory distress in the prehospital setting.

Grade Criteria: Weak recommendation, Low quality evidence

Two studies evaluating the use of hypertonic saline in the emergency department for infants with respiratory distress due to bronchiolitis showed differing results in improvement in respiratory scores, but no difference in revisit rates to the emergency department.\(^{1,2}\) For the one study that did show a difference in respiratory scores at 48 hours, there was no significant difference at 24 hours.\(^{1}\) This study also showed no difference in mean length of stay. The other study showed no difference in rate of hospital admission or change in oxygen saturation.\(^{1}\) Use of 3% saline in the inpatient setting reduced hospital length of stay.\(^{3}\)

<table>
<thead>
<tr>
<th>Question/Outcome</th>
<th>Summary of Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison of inhaled hypertonic saline in the prehospital setting vs. placebo</td>
<td>Head-to-head comparison in correct population</td>
</tr>
<tr>
<td>Comparison of inhaled hypertonic saline in the prehospital setting vs. other saline</td>
<td>Indirect comparison (e.g., interventions to placebo but not each other)</td>
</tr>
<tr>
<td>Comparison of inhaled hypertonic saline in the inpatient setting vs. placebo</td>
<td>Different populations (^{1})</td>
</tr>
<tr>
<td>Comparison of inhaled hypertonic saline in the inpatient setting vs. other saline</td>
<td>Different interventions</td>
</tr>
<tr>
<td>Comparison of inhaled hypertonic saline in the inpatient setting vs. inhaled saline</td>
<td>Different outcomes measured</td>
</tr>
<tr>
<td>Comparison of inhaled hypertonic saline in the inpatient setting vs. inhaled saline</td>
<td>Comparisons not applicable to question/outcome</td>
</tr>
</tbody>
</table>

Summary of Findings:

- **Number of Studies:** 4 RCTs of infants with bronchiolitis (189 inpatients; 65 outpatients) treated with nebulized 3% saline vs. 0.9% saline.
- **Sample:** 1,571 infants < 18 months old with moderate to severe bronchiolitis who received either 5 ml of 5%, 3%, or 0.9% saline with 1.5 ml epinephrine every 4 hours in a short-stay unit.
- **Design Limitations:** None
- **Indirectness of Comparison:** Dichotomous outcomes
- **Imprecision of Results:** Sample size lower than calculated optimal information size
- **Total # of events:** < 300 based on simulations & dependent on baseline risk & effect sizes
- **95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm

Consistency: No

Heterogeneity: No

Publication Bias: Low

Weak recommendation with low quality evidence that hypertonic saline should not be administered to children in respiratory distress in the prehospital setting.

Recommendation: Hypertonic saline should not be administered to children in respiratory distress in the prehospital setting.

Number of Studies: Total # 3 Systematic review/meta-analysis\(^{2}\) RCT\(^{1,2}\) Cohort Observational Case Reports Publication Bias Evident Yes No

Grade Criteria: Weak recommendation, Low quality evidence

Recommendation: Hypertonic saline should not be administered to children in respiratory distress in the prehospital setting.

Grade Criteria: Weak recommendation, Low quality evidence

Recommendation: Hypertonic saline should not be administered to children in respiratory distress in the prehospital setting.

1) Al-Ansari, K., Sakran, M., Davidson, B. L., El Sayyed, R., Mahjoub, H., & Ibrahim, K. (2010). Nebulized 5% or 3% hypertonic or 0.9% saline for treating acute bronchiolitis in infants. *Journal of Pediatrics*, 157(4), 630-634.

Sample Characteristics:

- **Type of Study:** RCT
- **Number of Participants:** 1,571 infants < 18 months old with moderate to severe bronchiolitis who received either 5 ml of 5%, 3%, or 0.9% saline with 1.5 ml epinephrine every 4 hours in a short-stay unit.
- **Length of Follow-Up:** 8-72 hours after administration.

Results:

- **Wang bronchiolitis severity score improvement at 48 hours:** Difference between 1.56 and 1.38 days (5%); 1.4 (-1.76 days) (9%), p = 0.36 (no difference)
- **Mean length of stay:** 0.74 (0.12-2.91) no difference
- **Rate of hospital admission:** 0.74 (0.12-2.91) no difference
- **Length of hospital stay:** 0.94 days (no difference)

Implications:

- **Evidence of Harm:** None
- **Evidence of Benefit:** Increased distress, decreased ED revisit rates to the emergency department.

Recommendation: Hypertonic saline should not be administered to children in respiratory distress in the prehospital setting.

Table: Hypertonic Saline for Bronchiolitis

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Patients</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. (^{2})</td>
<td>1,571</td>
<td>3% Saline</td>
<td>Placebo</td>
<td>Change in oxygen saturation (mean): 1.78 (0.5-4.06); no difference</td>
</tr>
<tr>
<td>Grewal et al. (^{2})</td>
<td>189</td>
<td>3% Saline</td>
<td>Placebo</td>
<td>Change in oxygen saturation (mean): 1.78 (0.5-4.06); no difference</td>
</tr>
<tr>
<td>Al-Ansari et al. (^{2})</td>
<td>630</td>
<td>3% Saline</td>
<td>Placebo</td>
<td>Change in oxygen saturation (mean): 1.78 (0.5-4.06); no difference</td>
</tr>
</tbody>
</table>

Indirectness:

- **Heterogeneity:** Low
- **Publication Bias:** Low

Recommendation: Hypertonic saline should not be administered to children in respiratory distress in the prehospital setting.

Grade Criteria: Weak recommendation, Low quality evidence

Consistency: No

Heterogeneity: No

Publication Bias: Low

Weak recommendation with low quality evidence that hypertonic saline should not be administered to children in respiratory distress in the prehospital setting.

Sample Characteristics:

- **Type of Study:** RCT
- **Number of Participants:** 1,571 infants < 18 months old with moderate to severe bronchiolitis who received either 5 ml of 5%, 3%, or 0.9% saline with 1.5 ml epinephrine every 4 hours in a short-stay unit.
- **Length of Follow-Up:** 8-72 hours after administration.

Results:

- **Wang bronchiolitis severity score improvement at 48 hours:** Difference between 1.56 and 1.38 days (5%); 1.4 (-1.76 days) (9%), p = 0.36 (no difference)
- **Mean length of stay:** 0.74 (0.12-2.91) no difference
- **Rate of hospital admission:** 0.74 (0.12-2.91) no difference
- **Length of hospital stay:** 0.94 days (no difference)

Implications:

- **Evidence of Harm:** None
- **Evidence of Benefit:** Increased distress, decreased ED revisit rates to the emergency department.

Recommendation: Hypertonic saline should not be administered to children in respiratory distress in the prehospital setting.

Table: Hypertonic Saline for Bronchiolitis

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Patients</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. (^{2})</td>
<td>1,571</td>
<td>3% Saline</td>
<td>Placebo</td>
<td>Change in oxygen saturation (mean): 1.78 (0.5-4.06); no difference</td>
</tr>
<tr>
<td>Grewal et al. (^{2})</td>
<td>189</td>
<td>3% Saline</td>
<td>Placebo</td>
<td>Change in oxygen saturation (mean): 1.78 (0.5-4.06); no difference</td>
</tr>
<tr>
<td>Al-Ansari et al. (^{2})</td>
<td>630</td>
<td>3% Saline</td>
<td>Placebo</td>
<td>Change in oxygen saturation (mean): 1.78 (0.5-4.06); no difference</td>
</tr>
</tbody>
</table>
Question 6e: In children with respiratory distress, does the use of inhaled racemic epinephrine in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Recommendation: Nebulized epinephrine should be administered to children in severe respiratory distress with presumed croup (e.g., have stridor at rest or barking cough) or refractory bronchiolitis (e.g., coarse breath sounds in the prehospital setting if other treatments [e.g., suctioning, oxygen] fail to result in clinical improvement.

Grade Criteria: Strong recommendation, Moderate quality evidence. There are no studies to date on the use of racemic epinephrine in children in the prehospital setting for any respiratory condition; however, two meta-analyses exist for the use of nebulized epinephrine for both croup and bronchiolitis in the emergency department setting. (1,2)

For emergency department patients with croup, croup scores were improved at 30 minutes and 6 hours with the use of nebulized epinephrine; no difference in return visits, readmission, or length of hospitalization existed when compared to placebo. (1) In addition, there was no difference between racemic and L-epinephrine, and the addition of IPPB (intermittent positive pressure breathing) made no difference. (1)

For emergency department inpatients with bronchiolitis, nebulized epinephrine improved clinical scores when compared to placebo (but not salbutamol), oxygen saturation in some instances (30 minutes for outpatients), short term respiratory rate (30 minutes in outpatients), and subjective improvement. (2) There were no differences in rates of admission to the hospital or length of hospital stay.

Recommendation: Strong recommendation with moderate quality evidence that nebulized epinephrine should be administered to children in severe respiratory distress with presumed croup (e.g., coarse breath sounds and have stridor at rest or barking cough) or refractory bronchiolitis in the prehospital setting if other treatments (e.g., suctioning, oxygen) fail to result in clinical improvement.

Number of Studies: Total # 2 Systematic review (1,2) RCT Cohort Observational Case Reports Publication Bias Evident Yes No

<table>
<thead>
<tr>
<th>Design Limitations</th>
<th>Summary of Consistency</th>
<th>Indirectness of Comparison</th>
<th>Imprecision of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No inconsistencies</td>
<td>Head-to-head comparison in correct population</td>
<td>Dichotomous outcomes</td>
</tr>
<tr>
<td>Insufficient sample size</td>
<td>Wide variation of treatment effect across studies</td>
<td>Indirect comparison (e.g., interventions to placebo but not each other)</td>
<td>Sample size lower than calculated optimal information size</td>
</tr>
<tr>
<td>Lack of blinding (1)</td>
<td>Populations varied (e.g., sicker, older)</td>
<td>Different populations (1,2)</td>
<td>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</td>
</tr>
<tr>
<td>Lack of allocation concealment (1,2)</td>
<td>Interventions varied (e.g., doses)</td>
<td>Different interventions</td>
<td>95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm</td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td>Outcomes varied (e.g., diminishing effect over time) (d)</td>
<td>Different outcomes measured</td>
<td></td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td></td>
<td>Comparisons not applicable to question/outcome</td>
<td></td>
</tr>
<tr>
<td>Stopped early for benefit</td>
<td>Selective reporting of measured outcomes (e.g., no effect outcome)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>CI/RR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) 8 RCTs or quasi-RCTs evaluating the use of nebulized racemic epinephrine for croup in emergency department or admitted patients with 3 different comparisons:

- Nebulized epinephrine vs. placebo
- Nebulized racemic epinephrine vs. L-epinephrine
- Nebulized epinephrine with IPPB (intermittent positive pressure breathing) vs. without IPPB

2) 14 RCTs evaluating the use of nebulized racemic epinephrine for bronchiolitis in emergency department patients and inpatients

1) Nebulized epinephrine vs. placebo

- Change in croup score (baseline to 30 minutes): -0.94 (-1.37 to -0.51); favors epinephrine
- Change in croup score (baseline to 2 hours): -0.15 (-1.03 to 0.73); no difference
- Change in croup score (baseline to 6 hours): -0.60 (-1.12 to -0.08); favors epinephrine
- Return visits/readmission: 0.0 (-0.07 to 0.07); no difference
- Length of hospitalization (hours): -1.80 (-4.07 to 0.47); no difference
- Improvement (risk ratio): 1.46 (0.82 to 2.60); no difference

- Nebulized racemic epinephrine vs. L-epinephrine

- Change in croup score (baseline to 30 minutes): 0.33 (-0.42 to 1.08); no difference
- Change in croup score (baseline to 2 hours): 0.87 (0.09 to 1.65); favors L-epinephrine
- Intubation: 0.19 (-0.03 to 0.40); no difference

- Nebulized epinephrine with IPPB (intermittent positive pressure breathing) vs. without IPPB

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347
2) Nebulized epinephrine vs. placebo

- **Clinical score (baseline to 30 min) (MD):** -0.28 [-0.54, -0.02]; favors epinephrine
- **Clinical score (baseline to 60 min) (MD):** -0.18 [-0.61, 0.28]; no difference
- **Clinical score (baseline to 90 min) (MD):** -0.32 [-0.82, 0.19]; no difference
- **Clinical score (baseline to 24 hours) (MD):** 0.11 [0.61, 0.83]; no difference
- **Clinical score (baseline to 36 hours) (MD):** 0.55 [0.18, 1.29]; no difference
- **Oxygen saturation (baseline to 30 min) (MD):** 0.31 [-0.88, 1.49]; no difference
- **Oxygen saturation (baseline to 60 min) (MD):** 1.91 [0.38, 3.44]; favors epinephrine
- **Oxygen saturation (baseline to 90 min) (MD):** -0.68 [-2.39, 1.03]; no difference
- **Admission to hospital (OR):** 0.40 [0.12, 1.33]; no difference
- **Length of hospital stay (MD-hours):** -3.96 [-25.55, 17.62]; no difference
- **Respiratory rate (baseline to 30 min) (MD):** -5.15 [-6.83, -3.46]; favors epinephrine
- **Respiratory rate (baseline to 60 min) (MD):** -7.76 [-11.35, -4.17]; favors epinephrine
- **Respiratory rate (baseline to 90 min) (MD):** -6.00 [-12.04, 2.04]; no difference
- **Heart rate (baseline to 30 min) (MD):** 0.33 [-5.12, 5.78]; no difference
- **Heart rate (baseline to 60 min) (MD):** 2.62 [-3.64, 16.13]; no difference
- **Heart rate (baseline to 90 min) (MD):** 14.00 [-22.95, -5.05]; favors epinephrine
- **Pallor (OR):** 4.51 [1.93, 10.53]; favors epinephrine
- **Pallor (OR: 30 min):** 6.00 [1.33, 27.00]; favors salbutamol

Nebulized epinephrine vs. salbutamol

- **Clinical score (baseline to 30 min) (MD):** -0.20 [-0.56, 0.16]; no difference
- **Clinical score (baseline to 60 min) (MD):** -0.18 [-0.61, 0.28]; no difference
- **Clinical score (baseline to 90 min) (MD):** -0.32 [-0.82, 0.19]; no difference
- **Clinical score (baseline to 24 hours) (MD):** 0.11 [0.61, 0.83]; no difference
- **Clinical score (baseline to 36 hours) (MD):** 0.55 [0.18, 1.29]; no difference
- **Oxygen saturation (baseline to 30 min) (MD):** 0.31 [-0.88, 1.49]; no difference
- **Oxygen saturation (baseline to 60 min) (MD):** 1.91 [0.38, 3.44]; favors epinephrine
- **Oxygen saturation (baseline to 90 min) (MD):** -0.68 [-2.39, 1.03]; no difference
- **Admission to hospital (OR):** 0.40 [0.12, 1.33]; no difference
- **Length of hospital stay (MD-hours):** -3.96 [-25.55, 17.62]; no difference
- **Respiratory rate (baseline to 30 min) (MD):** -5.15 [-6.83, -3.46]; favors epinephrine
- **Respiratory rate (baseline to 60 min) (MD):** -7.76 [-11.35, -4.17]; favors epinephrine
- **Respiratory rate (baseline to 90 min) (MD):** -6.00 [-12.04, 2.04]; no difference
- **Heart rate (baseline to 30 min) (MD):** 0.33 [-5.12, 5.78]; no difference
- **Heart rate (baseline to 60 min) (MD):** 2.62 [-3.64, 16.13]; no difference
- **Heart rate (baseline to 90 min) (MD):** 14.00 [-22.95, -5.05]; favors epinephrine
- **Pallor (OR):** 4.51 [1.93, 10.53]; favors epinephrine
- **Pallor (OR: 30 min):** 6.00 [1.33, 27.00]; favors salbutamol

Fundied by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347
Question 6f: In children with respiratory distress, does the use of inhaled magnesium sulfate in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Recommendation: Inhaled magnesium sulfate should not be administered to children in respiratory distress in the prehospital setting.

Grade Criteria: Weak recommendation, Low quality evidence

There is no significant improvement in pulmonary function or hospitalization rates between pediatric patients who received nebulized magnesium sulfate and those who did not. In adult patients with severe asthma, there was a significant difference in admission rates favoring the use of inhaled magnesium, but the data present for pediatric patients showed no difference in mild to moderate asthma exacerbations.

Recommendation: Weak recommendation with low quality evidence that inhaled magnesium sulfate should not be administered to children in respiratory distress in the prehospital setting.

Number of Studies: Total # 1 Systematic review/meta-analysis (1) RCT Cohort Observational Case Reports Publication Bias Evident Yes No

<table>
<thead>
<tr>
<th>Design Limitations</th>
<th>Summary of Consistency</th>
<th>Indirectness of Comparison</th>
<th>Imprecision of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No inconsistencies</td>
<td>Head-to-head comparison in correct population</td>
<td>Dichotomous outcomes</td>
</tr>
<tr>
<td>Insufficient sample size</td>
<td>Wide variation of treatment effect across studies</td>
<td>Indirect comparisons (e.g., interventions to placebo but not each other)</td>
<td>Sample size lower than calculated optimal information size</td>
</tr>
<tr>
<td>Lack of blinding</td>
<td>Populations varied (e.g., sicker, older)</td>
<td>Different populations (1)</td>
<td>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</td>
</tr>
<tr>
<td>Lack of allocation concealment (1)</td>
<td>Interventions varied (e.g., doses)</td>
<td>Different interventions</td>
<td>95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm</td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td>Outcomes varied (e.g., diminishing effect over time)</td>
<td>Different outcomes measured (1)</td>
<td></td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td></td>
<td>Comparisons not applicable to question/outcome</td>
<td></td>
</tr>
<tr>
<td>Stopped early for benefit</td>
<td>Selective reporting of measured outcomes (e.g., no effect outcome)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample

1) Six RCTs involving 296 patients were included. Three studies enrolled only adults and 2 enrolled exclusively pediatric patients; three of the studies enrolled severe asthmatics. Subgroup analysis was done on the pediatric population and this data is noted to the right when available.

1) Pediatric Data Only
Pulmonary function testing (MD): 0.36 [-0.14, 0.86]; no difference
Admission to the hospital (RR): 2.00 [0.19, 20.93]; no difference

Question 6g: In children with respiratory distress, does the use of inhaled steam in the prehospital setting result in a clinical improvement (i.e., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Recommendation: Inhaled steam via a mist tent should not be administered to children in respiratory distress in the prehospital setting.

Grade Criteria: Weak recommendation, Moderate quality evidence (1) This showed that mist therapy is ineffective for improving respiratory distress scores in children.

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347
Question 7: In children with respiratory distress, does the use of intravenous magnesium sulfate in the prehospital setting result in a clinical improvement (e.g., decreased distress, shorter ED length of stay, decreased admission rates to the hospital)?

Recommendation: Administer intravenous magnesium sulfate to children with presumed asthma in impending respiratory failure.

Grade Criteria: Strong recommendation, moderate quality of evidence (1-3)

<table>
<thead>
<tr>
<th>Design Limitations</th>
<th>Summary of Consistency</th>
<th>Indirectness of Comparison</th>
<th>Imprecision of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (1)</td>
<td>No inconsistencies</td>
<td>Head-to-head comparison in correct population (1)</td>
<td>Dichotomous outcomes</td>
</tr>
<tr>
<td>Insufficient sample size (2)</td>
<td>Wide variation of treatment effect across studies</td>
<td>Indirect comparisons (e.g. interventions to placebo but not each other)</td>
<td>Sample size lower than calculated optimal information size</td>
</tr>
<tr>
<td>Lack of blinding</td>
<td>Populations varied (e.g. sicker, older) (1-3)</td>
<td>Different populations (2,3)</td>
<td>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</td>
</tr>
<tr>
<td>Lack of allocation concealment</td>
<td>Interventions varied (e.g. doses) (1-3)</td>
<td>Different interventions (2)</td>
<td>95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm (4-6)</td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td>Outcomes varied (e.g. diminishing effect over time)</td>
<td>Different outcomes measured</td>
<td>No inconsistencies</td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td>Comparisons not applicable to question/outcome</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
</tr>
<tr>
<td>Stopped early for benefit</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
</tr>
<tr>
<td>Selective reporting of measured outcomes (e.g. no effect outcome)</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
</tr>
</tbody>
</table>

Sample 1) Meta-analysis of 9 studies with 859 pediatric patients given a bolus of IV MgSO4 in the ED for acute bronchospasm.

- 2) Cochrane Review of 6 trials involving 296 patients with asthma exacerbations treated with MgSO4. Two of the studies enrolled exclusively pediatric patients, and three studies enrolled only adults.

- 3) Cochrane Review of 7 trials involving 665 patients receiving MgSO4 in the emergency department for acute asthma. Five adult trials and two pediatric trials were included.

<table>
<thead>
<tr>
<th>Question</th>
<th>Recommendation</th>
<th>Grade Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>In children with respiratory distress</td>
<td>Administer intravenous magnesium sulfate to children with presumed asthma in impending respiratory failure.</td>
<td>Strong recommendation, moderate quality of evidence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Studies</th>
<th>Total # 3</th>
<th>Systematic review/Meta-analysis (1,2,3)</th>
<th>Cohort</th>
<th>Observational</th>
<th>Case Reports</th>
<th>Clinical Guideline</th>
<th>Publication Bias Evident</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Design Limitations</th>
<th>Summary of Consistency</th>
<th>Indirectness of Comparison</th>
<th>Imprecision of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (1)</td>
<td>No inconsistencies</td>
<td>Head-to-head comparison in correct population (1)</td>
<td>Dichotomous outcomes</td>
</tr>
<tr>
<td>Insufficient sample size (2)</td>
<td>Wide variation of treatment effect across studies</td>
<td>Indirect comparisons (e.g. interventions to placebo but not each other)</td>
<td>Sample size lower than calculated optimal information size</td>
</tr>
<tr>
<td>Lack of blinding</td>
<td>Populations varied (e.g. sicker, older) (1-3)</td>
<td>Different populations (2,3)</td>
<td>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</td>
</tr>
<tr>
<td>Lack of allocation concealment</td>
<td>Interventions varied (e.g. doses) (1-3)</td>
<td>Different interventions (2)</td>
<td>95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm (4-6)</td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td>Outcomes varied (e.g. diminishing effect over time)</td>
<td>Different outcomes measured</td>
<td>No inconsistencies</td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td>Comparisons not applicable to question/outcome</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
</tr>
<tr>
<td>Stopped early for benefit</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
</tr>
<tr>
<td>Selective reporting of measured outcomes (e.g. no effect outcome)</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
<td>No inconsistencies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Recommendation</th>
<th>Grade Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>In children with respiratory distress</td>
<td>Administer intravenous magnesium sulfate to children with presumed asthma in impending respiratory failure.</td>
<td>Strong recommendation, moderate quality of evidence</td>
</tr>
</tbody>
</table>

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347
Evidence from three observational studies offered differing results. One study found that EMS responders had a 98.3% success rate in obtaining IV line access in the prehospital setting. (2) A second observational study found a significant reduction in mortality after the implementation of advanced life support practices (i.e., starting IVs and intubating patients). (3) However, one study found that IV catheters, when placed, were used only 17% of the time. (1)

All three of the studies included adults as well as pediatric patients.

Recommendation: Weak recommendation with very low quality evidence that IVs should only be placed in children with respiratory distress for clinical concerns of dehydration, or when administering IV medications.

Grade Criteria:
- Weak recommendation
- Very low quality evidence

Number of Studies:
- Total # of studies: 3
 - Systematic review/Meta-analysis: 0
 - RCT: 0
 - Cohort: 0
 - Observational: 3
 - Case Reports: 0
 - Clinical Guideline: 0
 - Publication Bias Evident: 0

Limitations:
- None
- Insufficient sample size (2)
- Lack of randomization (3)
- Lack of allocation concealment
- Large losses to F/U
- Incorrect analysis of ITT
- Stopped early for benefit
- Selective reporting of measured outcomes (e.g., no effect outcome)

Summary of Consistency:
- No inconsistencies
- Wide variation of treatment effect across studies
- Populations varied (e.g., sicker, older)
- Interventions varied (e.g., doses)
- Outcomes varied (e.g., diminishing effect over time)

Indirectness of Comparison:
- Head-to-head comparison in correct population
- Indirect comparisons (e.g., interventions to placebo but not each other)
- Different populations (1-3)
- Different interventions
- Different outcomes measured
- Comparisons not applicable to question/outcome

Imprecision of Results:
- Dichotomous outcomes
- Sample size lower than calculated optimal information size
- Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes
- 95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm (1-3)

Sample:
- 34,585 prehospital patients
- 58 patients encountered by participating emergency medical service agencies who had at least one IV line placement
- 8,138 patients provided advanced life support for out-of-hospital respiratory distress

Consistency of Comparison:
1) Retrospective observational study of 34,585 prehospital patients.
2) Prospective observational study of 58 patients encountered by participating emergency medical service agencies who had at least one IV line placement.
3) Retrospective observational study of 8,138 patients provided advanced life support for out-of-hospital respiratory distress.

Question 9: In children with respiratory distress in the prehospital setting, do steroids lead to improved clinical outcomes? What is the appropriate timing of steroid administration? What are the indications and contraindications for the use of steroids? What is the preferred route?

Recommendation: Oral or parenteral steroids should be administered to children in respiratory distress with presumed asthma in the prehospital setting.

Grade Criteria: Strong recommendation, Moderate quality evidence

Two Cochrane Reviews and one meta-analysis found that early administration of corticosteroids in pediatric patients with asthma in the ED resulted in a reduction in the hospital admission rate. (10, 11, 14)

One Cochrane Review evaluating the benefit of systemic corticosteroids compared to placebo in acute pediatric asthma found that administration of corticosteroids was associated with a reduction in length of stay. (14) However, a RCT conducted in children age 10-60 months who presented to the ED with wheezing found there to be no significant difference in mean length of stay for those children receiving oral steroids, compared to controls. (9)

An RCT in 49 children presenting to the ED with asthma evaluated admission rate and pulmonary function for IV methylprednisolone vs. oral methylprednisolone. It found no significant difference between the two groups in regard to respiratory rates, oxygen saturation, and PISs and FEV1 values four hours after treatment. There was also no difference in admission rates between the two groups. (2)

One RCT evaluated length of stay, hospital admission rates, and adverse effects of prednisolone and dexamethasone for children presenting to the ED with asthma. The study found that hospital admission rates were higher and length of stay was longer for patients treated with prednisolone. (13)

Recommendation: Strong recommendation with moderate quality evidence that steroids should be administered to children in respiratory distress with presumed asthma in the prehospital setting.

Strong recommendation with moderate quality evidence that steroids administered either IV or IM are no more effective than steroids administered orally in improving pulmonary function, asthma scores, and reducing readmission rates.

<table>
<thead>
<tr>
<th>Number of Studies: Total # 14</th>
<th>Systematic review/Meta-analysis</th>
<th>RCT</th>
<th>Cohort</th>
<th>Observational</th>
<th>Case Reports</th>
<th>Publication Bias Evident</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Limitations</td>
<td>Summary of Consistency</td>
<td>Indirectness of Comparison</td>
<td>Imprecision of Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (3, 4, 5, 8, 10, 11, 12, 13)</td>
<td>No inconsistencies</td>
<td>Head-to-head comparison in correct population</td>
<td>Dichotomous outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficient sample size (1, 2, 6, 7, 13)</td>
<td>Wide variation of treatment effect across studies</td>
<td>Indirect comparisons (e.g., interventions to placebo but not each other)</td>
<td>Sample size lower than calculated optimal information size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of blinding</td>
<td>Populations varied (e.g., sicker, older) (1-14)</td>
<td>Different populations (1-14)</td>
<td>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of allocation concealment</td>
<td>Interventions varied (e.g. doses)</td>
<td>Different interventions (1-14)</td>
<td>95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td>Outcomes varied (e.g. diminishing effect over time)</td>
<td>Different outcomes measured (1-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td>Selective reporting of measured outcomes (e.g. no effect outcome) (9, 14)</td>
<td>Comparisons not applicable to question/outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample CI/RR

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347
1) RCT of 96 children (age 3-84 months) presenting to the ED with moderate-to-severe group
2) RCT of 49 pediatric patients who presented to the ED with moderate to severe asthma.
3) Cochrane Review of 48 studies with 15,155 patients (including 1155 children) that compared the addition of inhaled LABA to ICS to a higher dose of inhaled corticosteroids for asthma
4) Cochrane Review of 77 studies with 21,248 patients (including 4625 children) that compared the addition of inhaled LABA to inhaled corticosteroids to same dose inhaled corticosteroids for asthma
5) Cochrane Review of 10 studies with 587 patients (including 5 pediatric studies) that presented to the ED with asthma
6) RCT of 86 children (age 18 months - 6 years) who presented to the ED with clinical asthma score 3-7
7) RCT of 144 children with moderate-to-severe croup
8) Cochrane Review of 9 trials with 344 adult patients with acute severe asthma
9) RCT of 687 children (age 10 months - 60 months) who presented to an ED with an attack of wheezing associated with a viral infection.
10) Meta-analysis of 30 RCTs with patients presenting to the ED for asthma exacerbations. Several of the studies involved pediatric patients; none of the studies were in the prehospital setting. Several of the studies involved pediatric patients; none of the studies were in the prehospital setting.
11) Cochrane Review of 9 RCTs on participants > 2 presenting to an ED with signs and symptoms of asthma. 5 of the studies involved pediatric patients; none of the studies were in the prehospital setting.
12) Cochrane Review of 31 studies with 3736 children with croup
13) A RCT of 111 children (age 1-17 yrs) who presented to ED with acute asthma.
14) Cochrane Review of 7 RCTs that included 426 children (age 1-18 yrs) with severe acute asthma that received oral, inhaled, IV or intramuscular corticosteroids. None were prehospital studies, and all participants were assessed in the ED and admitted to the hospital with asthma.

1) No statistical difference between the group that received IM dexamethasone and the one that received oral dexamethasone for the proportion of stridor, expiratory sounds, barky cough, sleep pattern, the degree of improvement or proportion with complete resolution after 1 day
2) Pulmonary function: 4 hrs after treatment both groups (IV methylprednisolone and oral methylprednisolone) had similar respiratory rates, oxygen saturation, PISs, and FEV1 values (p = not significant).
3) Admission rate: 48% of patients in the oral group and 50% of patients in the IV group were admitted to the hospital (p = 0.88)
4) The addition of LABA to ICS reduced the risk of exacerbations requiring oral steroids by 23% from 15% to 11% (RR 0.77; 95% CI: 0.68 to 0.87); subgroup estimate for pediatric pts was not statistically significant (RR 0.89; 95% CI: 0.58 to 1.39)
5) Hospital Admission: pts administered ICS were less likely to be admitted (OR:0.32; 95% CI:0.18 to 0.54)
6) Asthma Score: mean change at 4 day FU was 3.6 in IM dexamethasone group and 3.4 in 5 day oral prednisolone group (difference 0.2; 95% CI: -0.4 to 0.7)
7) Hospital Admission: rates of admission were 71% in placebo group, 38% in nebulized budesonide group, and 23% in IM dexamethasone group (p = 0.001 for comparison of budesonide with placebo, p < 0.001 for comparison of dexamethasone with placebo, and p = 0.18 for comparison of budesonide with dexamethasone)
8) Croup Scores: children treated with budesonide or dexamethasone had greater improvement in croup scores than those given placebo (p = 0.03 and p < 0.0001); pts treated with dexamethasone (-2.9) had a greater improvement than those treated with budesonide (-2) (p = 0.003)
8) • FEV1: no significant difference between the comparison groups of different doses of corticosteroids after 24, 48 of 72 hrs; at 48 hrs, the WMD was -3.3% predicted (95% CI: -12.4 to 5.8) for the low vs. medium dose comparison, -1.9% predicted (95% CI: -8.1 to 4.3) for the medium vs. high dose comparison and 0.5% predicted (95% CI: -7.8 to 8.8) for the low vs. high dose comparison

9) • Length of stay: no significant difference between the placebo group and the prednisolone group (13.9 hrs vs. 11.0 hrs; ratio of geometric means, 0.90, 95% CI: 0.77-1.05)
• Albuterol actuations administered: not significant
• PRAM scores at 4-24 hrs: not significant

10) • Hospital admission following the early use of corticosteroids (any route) in the ED: OR: 0.50 (95% CI: 0.31-0.81)
 - there was no difference in the magnitude of the reduction in admission rates between studies of children (OR: 0.40, 95% CI: 0.17-0.94) and adults (OR: 0.58, 95% CI: 0.32-1.07)
 - early outcomes (< 2 hr) were not significant (OR:1.38, 95% CI: 0.41-4.67); at 4 hrs the benefit of CS was (OR: 0.48, 95%: 0.24-0.97); and at 6 hrs (OR:0.28, 95% CI: 0.09-0.84)
 - admission rates appeared greater with oral route (OR: 0.24, 95% CI: 0.11-0.53) than IV (OR: 0.68, 95% CI: 0.39-1.21)

11) • Admission rate: use of steroids early in the treatment of asthmatic exacerbations reduces admissions in adults (OR: 0.47, 95% CI: 0.27-0.79); and in children (OR : 0.06-0.42)
• Pulmonary function: Oral and IV steroids have equivalent effects on pulmonary function in acute exacerbations (ES: -0.07; 95% CI: -0.39-0.25)

12) • Westley Score: glucocorticosteroid treatment associated with an improvement in score at 6 hours (WMD -1.2; 95% CI -1.6 to -0.8) and at 12 hours (WMD -1.9; 95% CI: -2.4 to -1.3)
• Readmissions: Fewer return visits and readmissions occurred in its treated with glucocorticosteroids (RR 0.50; 0.36 to 0.70)
• LOS in ED: decreased for patients with glucocorticosteroids (WMD 12 hours; 95% CI: 5 to 19 hours)
• Epi Use: decreased for patients with glucocorticosteroids (risk difference 10%; 95% CI 1 to 20)
• Group Score: no mean difference between oral vs. IM dexamethasone
• Readmissions: reduced risk in oral group (RR 0.80; 95% CI: 0.58 to 1.12)

13) • Hospital admission for patients treated with oral prednisone vs. nebulized dexamethasone: 21% of patients treated with dexamethasone required hospitalization, compared with 31% of those treated with prednisone (p = 0.26)
• Length of Stay: 23% of patients treated with dexamethasone were discharged home within 2 hrs, vs. 7%
<table>
<thead>
<tr>
<th>Study</th>
<th>Findings</th>
</tr>
</thead>
</table>
Question 10: In children with respiratory distress in the prehospital setting, when are IV fluids clinically effective and useful? There was no relevant literature found that addressed the identified PICO question.
Recommendation: IVs should only be placed in children with respiratory distress for clinical concerns of dehydration, or when administering IV medications.
Grade Criteria: Weak recommendation, Very low quality evidence
Question 11: In children with respiratory distress in the prehospital setting, does epinephrine (IM/SQ/IV) lead to improved clinical outcomes? What is the appropriate timing of epinephrine use? What are the indications and contraindications for the use of epinephrine?

Recommendation: Epinephrine should only be administered to children with impending respiratory failure as adjunct therapy to albuterol when there are no clinical signs of improvement.

Grade Criteria: Strong recommendation, Moderate quality evidence

Two RCTs in children presenting to the ED with asthma found no significant difference in clinical respiratory scores, respiration rates, PFT, or pulmonary function between patients who received albuterol and patients who received subcutaneous epinephrine. (1,2) Admission rates were also similar for the two groups. Adverse events were significantly higher in the epinephrine group, however. (3)

One RCT evaluating children with asthma found that 65% of patients receiving epinephrine experienced improved respiratory status compared to 7% of patients receiving placebo. (3)

None of the above studies were in the prehospital setting, and all had sample sizes less than 45.

Table: 11. Effectiveness of Epinephrine vs. Placebo in Children with Asthma

<table>
<thead>
<tr>
<th>Design Limitations</th>
<th>Summary of Consistency</th>
<th>Indirectness of Comparison</th>
<th>Imprecision of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No inconsistencies</td>
<td>Head-to-head comparison in correct population</td>
<td>Dichotomous outcomes</td>
</tr>
<tr>
<td>Insufficient sample size</td>
<td>Wide variation of treatment effect across studies</td>
<td>Indirect comparisons (e.g., interventions to placebo but not each other)</td>
<td>Sample size lower than calculated optimal information size</td>
</tr>
<tr>
<td>Lack of blinding</td>
<td>Populations varied</td>
<td>Different populations</td>
<td>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</td>
</tr>
<tr>
<td>Lack of allocation concealment</td>
<td>Outcomes varied (e.g., doses)</td>
<td>Different interventions</td>
<td>95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm</td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td>Outcomes varied (e.g., diminishing effect over time)</td>
<td>Different outcomes measured</td>
<td></td>
</tr>
<tr>
<td>Stopped early for benefit</td>
<td></td>
<td>Comparisons not applicable to question/outcome</td>
<td></td>
</tr>
<tr>
<td>Selective reporting of measured outcomes (e.g., no effect outcome)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample

1) RCT of 40 children with acute asthma.
2) RCT of 43 children (age 3-12 years) presenting to the ED with acute asthma.
3) RCT of 30 children (age < 24 months) who presented to the ED with wheezing.
4) RCT of 154 adult patients (age 18-50 years) who presented to paramedics with shortness of breath and wheezing.
5) RCT of 19 children presenting to the ED with acute asthma (age 2-18 years).

CI/RR

1. **Respiratory Status:** no difference in clinical score, RR, or PFT between group randomized to receive inhaled albuterol and group randomized to receive subcutaneous epinephrine
 - **Admission rates:** no difference in admission rates or return to ED between group that received albuterol and group that received epinephrine
 - **Adverse events:** increased adverse events among epinephrine group (p < 0.01)

2. **Respiratory Status:** no difference at 20 minutes and 2 hours post-treatment in clinical score, peak flow, or RR between the group randomized to receive subcutaneous, long-lasting epinephrine and albuterol, and the group randomized to receive only albuterol

3. **Respiratory Status:** 65% of patients receiving epinephrine experienced improved respiratory status, compared to 7% of patients receiving placebo (p = 0.0067)

4. **PEFR:** the mean difference between pre-treatment and post-treatment PEFR was 73 l/min and did not vary significantly between the...
subcutaneous epinephrine, nebulized metaproterenol and subcutaneous epinephrine and nebulized metaproterenol groups

5) Pulmonary Function (FEV1, FVC, FEF): measures at 20 minutes and 1 hour post-treatment were not significantly different between group randomized to subcutaneous epinephrine and group randomized to receive nebulized terbutaline

Question 12: In children with respiratory distress, what are the clinical situations in which the following non-invasive airway adjuncts improve oxygenation and/or respiratory distress: Continuous positive airway pressure (CPAP) and Nasal continuous positive airway pressure (nCPAP)?

Recommendation: CPAP for bronchospasm should be administered to children in severe respiratory distress.

Design Limitations
- Insufficient sample size (1-3,5)
- Lack of allocation concealment (1-3,5)
- Large losses to F/U
- Incorrect analysis of ITT
- Stopped early for benefit
- Selective reporting of measured outcomes (e.g., no effect outcome)

Summary of Consistency
- No inconsistencies (1-5)
- Wide variation of treatment effect across studies
- Populations varied (e.g., sicker, older)
- Interventions varied (e.g., doses)
- Outcomes varied (e.g., diminishing effect over time)

Indirectness of Comparison
- Head-to-head comparison in correct Population (1-5)
- Indirect comparisons (e.g., interventions to placebo but not each other)
- Different populations
- Different interventions
- Different outcomes measured
- Comparisons not applicable to question/outcome

Imprecision of Results
- Dichotomous outcomes
- Sample size lower than calculated optimal size (1-5)
- Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes (1-5)
- 95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm

Sample

1) Retrospective chart review. 83 pediatric patients (2 to 17 years old) presenting to Emergency Department with status asthmaticus refractory to conventional pharmacological treatment. All were placed on BiPap with beta 2 agonist.

2) Prospective, observational study. Twelve infants < 3 months with a diagnosis of bronchiolitis, confirmation of RSV and severe respiratory distress as defined by a PCO₂ > 50 mmHg with a respiratory assessment score (m-WCAS) > 5. The patients were excluded if the received a bronchodiator treatment within the first 2 hours of enrollment or had a pneumothorax on chest x-ray. Nasal continuous positive airway pressure (nCPAP) was instituted in the PICU. Outcomes measured were the effect of nCPAP on respiratory distress, breathing pattern, and respiratory effort.

3) Retrospective chart review. 79 children (2 to 18 years old) admitted to the Pediatric ICU for treatment of status asthmaticus, 5 children (6%) received NPPV and 8 (10%) children were intubated. 4 of the 5 NPPV patients had BMI of 32 ± 5.

4) Randomized control trial. 29 children < 1 year with bronchiolitis and capillary PCO₂ > 45 mmHg (> 6 kPa) were randomized and treated with CPAP and standard therapy then crossed over to the alternative treatment after 12 hours.

5) 18.9% of the patients received CPAP in the field. No patient who received CPAP in the prehospital setting required intubation in the field or emergency department. 17% were continued on CPAP upon admission with the average length of stay in the ICU being 3.0 days (1-6 days).

Date: July 31, 2011
5) Observational study. In the prehospital setting, CPAP was applied to 106 patients ≥12 years old deemed in acute respiratory distress (dyspnea, RR ≥ 25/min, and/or retractions or accessory muscle use, arterial hypoxemia as evidenced by O₂ sats of 95% in spite of supplemental oxygen administration). Outcomes measured included: intubation in the field and/or emergency department and length of stay in the hospital.

Question 12b: Bag-valve-mask ventilation
Recommendation: Bag-valve-mask ventilation should be utilized in children with respiratory failure.
Grade Criteria: Strong recommendation, Moderate quality evidence
The use of bag-valve-mask in the prehospital setting has been shown to improve oxygenation and/or ventilation to help prevent the need for endotracheal intubation. Two studies completed in the prehospital setting both demonstrated significant clinical data showing children intubated in the field had lower Glasgow Coma Scale Scores and lack of improvement in neurological deficits at discharge. Both studies also found no advantage in adding endotracheal intubation skills to the scope of practice of the paramedics where BVM was already in use.

<table>
<thead>
<tr>
<th>Number of Studies: Total # 2</th>
<th>Systematic review</th>
<th>RCT (1)</th>
<th>Cohort</th>
<th>Observational (1)</th>
<th>Case Reports</th>
<th>Publication Bias Evident</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Limitations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficient sample size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of blinding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of allocation concealment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stopped early for benefit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective reporting of measured outcomes (e.g., no effect outcome)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Consistency								
Head-to-head comparison in correct population (1,2)								
Indirect comparisons (e.g., interventions to placebo but not each other)								
Different populations								
Different interventions								
Different outcomes measured								
Comparisons not applicable to question/outcome								

Indirectness of Comparison								
Dichotomous outcomes								
Sample size lower than calculated optimal information size								
Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes (1)								
95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm (2)								

Imprecision of Results								
1) Retrospective chart review. 105 pediatric trauma patients < 18 years old in whom endotracheal intubation (ETI) was attempted either in the field, hospital, or trauma center emergency department. Subsequent ETI attempts had failure rates of 50% in the field and 0% in hospital or trauma center. Effectiveness of field ETIs were measured.								
2) RCT. 830 children < 12 years old, < 40 kg requiring airway management. Bag-valve-mask (BVM) was assigned on odd days and BVM followed by ETI was assigned on even days in the prehospital setting of 2 large, urban, rapid-transport emergency medical services (EMS) systems. Survival to hospital discharge and neurological status at discharge from hospital as compared to treatment group.								

CI/RR								
1) 9.5% could not be oxygenated by bag-valve-mask before ETI. 23% of children had complications related to ETI (aspiration). RR of airway complications was 2.5 X higher with more than one ETI attempt (P < 0.05). 4% of airway complications occurred in trauma center, 29% in hospital, and 66% in the field (P < 0.05). Multiple ETI attempts were related to transport delay, lower Glasgow Coma Scale, longer hospital stays, and lower GCS at discharge independent of injury (P < 0.001). 9.3% could not be oxygenated or ventilated before ETI by bag-valve-mask.								
2) No significant difference in survival between BVM group (123/404 [30%]) and the ETI group (110/416 [26%]) OR 0.82; 95% CI: 0.61, 1.11 or in achieving good neurological outcome (BVM, 92/404 [23%] vs ETI, 85/416 [20%]) OR, 0.87; 95% CI: 0.62, 1.22. The survival rate or neurological outcome of pediatric patients did not improve by adding out-of-hospital ETI to paramedic scope of practice that already includes the BVM.								

Question 12c: Heliox

Recommendation: Heliox should not be routinely administered to children with respiratory distress.

Grade Criteria: Strong recommendation, Moderate quality evidence

Heliox was studied in pediatric patients diagnosed with acute asthma, bronchiolitis, and croup admitted to the emergency department and the pediatric intensive care unit. Two Cochrane Reviews looking at adults and children with acute asthma determined there was no significant data supporting the use of heliox in all asthma patients in the emergency department. Heliox did not improve pulmonary function or peak flow and increased heart rate and respiratory rate. In two studies patients with bronchiolitis showed an improvement in clinical respiratory scores in the first hour of administration of heliox in the pediatric intensive care unit. In the two studies looking at croup, there was no significant change in clinical respiratory scores during treatment or post-treatment using heliox as compared with the oxygen group. There was also no change in admission rates or length of hospital stay.

Limitations:

- Small studies
- Single, small evaluations
- Significant heterogeneity
- No high-quality studies
- Inconsistency
- Lack of allocation concealment
- Lack of blinding
- Insufficient sample size

Recommendation: Strong recommendation with moderate quality evidence that heliox should not be routinely administered to children with respiratory distress.

Number of Studies: Total # 6

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Total # 6</th>
<th>Systematic review</th>
<th>RCT</th>
<th>Cohort</th>
<th>Observational</th>
<th>Case Reports</th>
<th>Publication Bias Evident</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study 2</td>
<td>2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study 3</td>
<td>3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study 4</td>
<td>4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study 5</td>
<td>5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study 6</td>
<td>6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Consistency

- No inconsistencies
- Wide variation of treatment effect
- Populations varied (e.g., sicker, older)
- Interventions varied (e.g., doses)
- Outcomes varied (e.g., diminishing effect over time)
- Head-to-head comparison in correct population
- Indirect comparisons (e.g., interventions to placebo but not each other)
- Different populations
- Different interventions
- Different outcomes measured
- Comparisons not applicable to question/outcome

Imprecision of Results

- Dichotomous outcomes
- Sample size lower than calculated optimal information size
- Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes
- 95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm

CI/RR

1) 32 (72.7%) treatments had an immediate response and 12 treatments had no response.

2) Infants treated with heliox had lower mean clinical respiratory score within the first hour after the implementation of therapy when compared to the infants receiving oxygen or air inhalation. Mean Difference (MD) -1.15, 95% CI: -1.98; -0.33, P = 0.006, n = 69. There was no reduction in rate of intubation (RR 1.38, 95% CI 0.41 to 4.56, P = 0.60, n = 58) or in length of stay in PICU (MD = -0.15 days, 95% CI: -0.92, 0.61, P = 0.69, n = 58).

3) After 1 hour of heliox therapy the clinical score improved significantly as compared to the oxygen group (3.6 ± 1.16 vs 5.5 ± 0.89) continuing to be significant at the end of the observation period. No statistics were provided for length of stay in PICU.

4) There was not clear benefit of administering helium-oxygen mixtures to all emergency department patients. Heliox may improve clinical respiratory scores on the most severe asthma cases.

5) No significant differences between heliox or oxygen/air group for peak flow (SMD -0.20; 95% CI: 1.27, 16.8; p=0.02). Also a nonsignificant increase in pulmonary function (SMD, -0.21; 95% CI: -0.43, 0.01; p = 0.06).

6) Only one study included data for analysis: no significant change in croup score after 20 minutes (MD 0.83;

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H34MC19347
standard treatments.

6) Cochrane Systematic Review. Two studies were analyzed with 44 pediatric patients, 22 patients received heliox and the other 22 patients received either 30% oxygen or 100% oxygen in conjunction with racemic epinephrine.

95% CI: -0.9, 2.56; no significance in post-treatment croup score (MD 0.57, 95% CI: -1.54, 0.4); no significant influence on heart rate (MD 14.5, 95% CI: -5.4, 34.5) or respiratory rate (MD 6.3, 95% CI: -2.1, 14.8) or oxygen saturation (MD -0.4, 95% CI: -1.8, 1.0)

Question 13: In children with respiratory distress in the prehospital setting, do supraglottic devices and intubation lead to improved clinical outcomes? What are the indications and contraindications for using a supraglottic device or intubating a patient?

Recommendation: Supraglottic devices and intubation should be utilized only if bag-valve-mask ventilation fails. The airway should be managed in the least invasive way possible.

Grade Criteria: Weak recommendation, Very low quality evidence

One observational study of patients in the prehospital setting who had attempted intubation found that only 74.8% of transported patients were intubated successfully, and that malpositioned tubes were more commonly found in children than adults. (10)

A second observational study found a significant reduction in mortality after the implementation of advanced life support practices (i.e., starting IVs and intubating patients). (3)

A RCT in pediatric patients in the prehospital setting found no significant difference in survival or in the rate of good neurological outcomes between patients randomized to an endotracheal group and those randomized to a bag-valve-mask ventilation group. (4)

Recomendation: Supraglottic devices and intubation should be utilized only if bag-valve-mask ventilation fails. The airway should be managed in the least invasive way possible.

Grade Criteria: Weak Recommendation, Very Low Quality Evidence

Number of Studies: Total # 3 Systematic review/Meta-analysis RCT (2) Cohort Observational (1,3) Case Reports Clinical Guideline Publication Bias Evidence Yes No

<table>
<thead>
<tr>
<th>Design Limitations</th>
<th>Summary of Consistency</th>
<th>Indirectness of Comparison</th>
<th>Imprecision of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No inconsistencies</td>
<td>Head-to-head comparison in correct Population</td>
<td>Dichotomous outcomes</td>
</tr>
<tr>
<td>Insufficient sample size</td>
<td>Wide variation of treatment effect across studies</td>
<td>Indirect comparisons (e.g., interventions to placebo but not each other)</td>
<td>Sample size lower than calculated optimal information size</td>
</tr>
<tr>
<td>Lack of binding (1,3)</td>
<td>Populations varied (e.g., sicker, older)</td>
<td>Different populations (1,3)</td>
<td>Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes</td>
</tr>
<tr>
<td>Lack of allocation concealment</td>
<td>Interventions varied (e.g., doses)</td>
<td>Different interventions</td>
<td>95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm</td>
</tr>
<tr>
<td>Large losses to F/U</td>
<td>Outcomes varied (e.g., diminishing effect over time)</td>
<td>Different outcomes measured</td>
<td>1,3</td>
</tr>
<tr>
<td>Incorrect analysis of ITT</td>
<td>Stopped early for benefit</td>
<td>Comparisons not applicable to question/outcome</td>
<td></td>
</tr>
<tr>
<td>Selective reporting of measured outcomes (e.g., no effect outcome)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample

1) Prospective observational study of 825 patients who had attempted prehospital intubation.
2) RCT of 830 pediatric patients (< 12 years) who required airway management in the prehospital setting.
3) Retrospective observational study of 8138 patients provided advanced life support for out-of-hospital respiratory distress

1) Rate of successful intubation: 74.8% of transported patients were successfully intubated, 20% had failed intubation and 5.2% had malpositioned tube on arrival to the ED. Malpositioned tubes were significantly more common in children (13% compared with 4% for non-pediatric patients).
2) Survival to hospital discharge: no significant difference in survival between the bag-valve-mask ventilation group (30%) and the endotracheal intubation group (26%); OR: 0.82; 95% CI: 0.61, 1.11
3) Neurological outcomes: no significant difference in achieving good neurological outcomes between the bag-valve-mask ventilation group (23%) and the endotracheal intubation group (20%); OR: 0.87; 95% CI: 0.62,1.22

Question 14: In children with respiratory distress, is the use of capnography efficacious and clinically useful?

Recommendation: Measuring end-tidal CO$_2$ (ETCO$_2$) is safe, reliable and non-invasive and demonstrates a strong correlation with pulse oximetry; it should be used as an adjunct to other forms of respiratory monitoring.

Grade Criteria: Strong recommendation, Low quality evidence

Four studies were found that noted ETCO$_2$ to be a feasible and non-invasive measurement tool in children; however there is no evidence that either proves or disproves the use as being efficacious within the prehospital setting. Noninvasive ETCO$_2$ monitoring is safe and reliable, and has shown good correlation with capillary refill and CO$_2$. ETCO$_2$ measurements do not distinguish between children in severe distress versus those in moderate distress.

Abramo et al (1996) found in a prospective, observational study of 85 nonintubated children with upper and lower respiratory distress that measuring ETCO$_2$ is safe and efficacious and as reliable as arterial partial pressure of CO$_2$ (CapCO$_2$; $t = 14.9$, $P < 0.0001$, $r = 0.87$ with a 95% CI for prediction of ± 5 mmHg). In 2005, a prospective cohort study was conducted to evaluate the utility of ETCO$_2$ as a predictor for hospital admission in children with acute asthma exacerbation. This pilot study suggests that baseline ETCO$_2$ measurement is helpful in predicting admission. The odds of being admitted were found to be 18.77 times higher for patients with a baseline capnography ratio less than 0.15. In addition, this ratio was a highly sensitive and moderately specific indicator of admission (See Table 2 below). Guthrie et al. (2007) found that after evaluating the association between children’s ETCO$_2$ and asthma disease severity that ETCO$_2$ values do not distinguish between children with mild and with more severe asthma. Lastly, a retrospective study investigating the relationship and level of agreement between ETCO$_2$ and vpCO$_2$ in nonintubated, admitted children with moderate to severe respiratory distress found that ETCO$_2$ and vpCO$_2$ are highly correlated; however, ETCO$_2$ cannot replace a blood gas evaluation.

<table>
<thead>
<tr>
<th>Capnography ratio</th>
<th>Hospitalized (n = 12)</th>
<th>Discharged (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.15</td>
<td>83.3</td>
<td>32.0*</td>
</tr>
<tr>
<td>>0.15</td>
<td>16.7</td>
<td>68.0</td>
</tr>
</tbody>
</table>

Sensitivity: 82.3% (95% CI: 50.9–97.1%); specificity: 60.0% (99% CI: 34.4–81.8%); PPV: 35.3% (99% CI: 13.1–77.6%); NPV: 89.3% (99% CI: 85.3–91.2%); relative risk: 2.38 (95% CI: 1.34–4.68); CI indicate confidence interval; PPV, positive predictive value; NPV, negative predictive value. *$P < 0.05$ by x2.
Recommendation(s): Strong recommendation with low quality evidence to utilize capnography in conjunction with pulse oximetry.

Number of Studies: Total 4

<table>
<thead>
<tr>
<th>Sample</th>
<th>CI/RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) N = 85 non-intubated children presenting to the EC with upper and lower respiratory distress (mean 5.42 years)</td>
<td></td>
</tr>
<tr>
<td>2) N = 100 children with acute asthma presenting to the EC (mean age 8.3 years)</td>
<td></td>
</tr>
<tr>
<td>3) N = 37 children with acute asthma exacerbation presenting to the EC</td>
<td></td>
</tr>
<tr>
<td>Hospitalized children- N = 12 Discharged children- N = 25</td>
<td></td>
</tr>
<tr>
<td>4) N = 62 non-intubated children admitted to an intermediate care unit with moderate to severe respiratory distress (mean 5.7 years) with 80 paired ETCO2 and vpCO2 values</td>
<td></td>
</tr>
</tbody>
</table>

1) Mean ETCO2 = 33 ± 4.6 mmHg and CapCO2 of 38 ± 4.5 mmHg. The relationship between CapCO2 and ETCO2 was statistically significant with a 95% CI for prediction of ± 5 mmHg (t = 14.9, p < 0.0001, r = 0.87).

2) Children admitted, at presentation, had an ETCO2 values that were slightly lower than those discharged (mean 32.9; 95% CI: 31, 34.6; mean 35.6; 95% CI: 34.6, 36.6; p < 0.02, respectively). Similar findings were found at disposition.

3) The odds of being admitted were 18.77 times higher for patients with a baseline capnography ratio < 0.15. Baseline capnograph ratio of < 0.15 was highly sensitive and a moderately specific indicator of admission. See Table 2 below.

4) The mean ± SD for ETCO2 and vpCO2 was 35.7 ± 10.1 mmHg and 39.4 ± 10.9 mmHg, respectively. ETCO2 and vpCO2 were highly correlated (r = 0.90, P < 0.0001). The correlations for asthma, bronchiolitis, and pneumonia were 0.74 (P < 0.0001), 0.832 (P = 0.0002), and 0.98 (p < 0.0001), respectively.

Question 15: In children with respiratory distress, are there improved patient outcomes when an online medical direction is contacted versus no online medical direction is contacted? There was no relevant literature found that addressed the identified PICO question.

Question 16: In children with respiratory distress, are there improved patient outcomes when patients are transported by Advanced Life Support (ALS) providers as compared to Basic Life Support (BLS) providers? There was no relevant literature found that addressed the identified PICO question.
Question 17: In children with respiratory distress, is it clinically efficacious to transport with lights and sirens?

Recommendation: Routine use of lights and sirens (Code 3 transport) is not recommended during transport.

Grade Criteria: Strong recommendation, Low quality evidence (1-3)

Three studies were found evaluating the use of lights and sirens for transport. Lacher et al. (1997) specifically looked at 622 pediatric EMS calls of which 312 utilized L&S for transport to evaluate the appropriateness of L&S in the pediatric EMS transport. Basic units were more likely to utilize L&S inappropriately for stable patients in comparison to paramedic units (P < 0.15). Patients transported inappropriately were more likely to be discharged home in comparison to patients whose medical needs warranted L&S transport (74% versus 41%, P < 0.001). Lastly, patients with cardiovascular and respiratory chief complaints were more likely to be transported with appropriate L&S than those children with general medical, trauma, or central nervous system complaints. However, a previous study prospectively studied 50 EMS calls (not pediatric specific) to determine whether or not transporting with L&S was faster. It found that although it was faster by 43.5 seconds, it was not clinically relevant except for in rare circumstances. Ho and Casey (1998) examined the speed of response to a call with L&S, in an urban setting. They found that it was significantly faster to travel with L&S in comparison to without (4.46 vs. 7.48 minutes).

Recommendation: Strong recommendation with low quality evidence that routine use of lights and sirens (Code 3 transport) is not recommended during transport.

Number of Studies: Total # 3 □ Systematic review □ RCT □ Cohort □ Observational (1-3) □ Case Reports □ Publication Bias Evident □ Yes □ No

Table: Design Limitations

- None
- Insufficient sample size (1-3)
- Lack of blinding (1-3)
- Lack of allocation concealment (1-3)
- Large losses to F/U
- Incorrect analysis of ITT
- Stopped early for benefit
- Selective reporting of measured outcomes (e.g., no effect outcome)

Table: Summary of Consistency

- No inconsistencies
- Wide variation of treatment effect across studies
- Populations varied (e.g., sicker, older)
- Interventions varied (e.g., doses)
- Outcomes varied (e.g., diminishing effect over time)

Table: Indirectness of Comparison

- Head-to-head comparison in correct population
- Indirect comparisons (e.g., interventions to placebo but not each other)
- Different populations (1-3)
- Different interventions
- Different outcomes measured
- Comparisons not applicable to question/outcome

Table: Imprecision of Results

- Dichotomous outcomes
- Sample size lower than calculated optimal information size (1,3)
- Total # of events is < 300 based on simulations & dependent on baseline risk & effect sizes
- 95% CI (or alternate measure) includes negligible effect and appreciable benefit or harm

Sample

1) N = 64 EMS runs (Urban setting)
 Group 1: Lights and sirens group (L&S; Code 3)
 Group 2: non-Lights and sirens group (non-L&S; Code 2)
2) N = 50 transport times
 Group 1: Lights and sirens group (L&S)
 Group 2: non-Lights and sirens group (non-L&S)
3) N = 504 pediatric EMS calls
 Lights and sirens (L&S) were used in 312 (62%) of the EMS calls

1) Average Code 3 response was 4.46 minutes versus 7.48 minutes. The 3.02 minutes (95% CI: 0.8 to 5.24 minutes; P < 0.01) saved presents a significant time savings of 38.5% (95% CI: 35.7, 41.3%; P < 0.01).
2) The time differences between the two groups ranged from 311 seconds faster in the L&S to 169 seconds slower with L&S. 38 (76%) of the interventions to placebo but not each other (1-3)
3) Basic units were more likely to utilize L&S inappropriately for stable patients in comparison to paramedic units (P < 0.15). Patients transported inappropriately were more likely to be discharged home in comparison to patients whose medical needs warranted L&S transport (74% vs. 41%, P < 0.001).

Funded by the Health Resources and Services Administration EMSC Targeted Issues Grant #H54MC19347