DEVELOPMENT OF A NOVEL HUMAN IN VITRO BLOOD-NERVE BARRIER MODEL

NEJLA YOSEF, M.S., ROBIN H. XIA, M.D., Ph.D., EROBOGHENE E. UBOGU, M.D.
NEUROMUSCULAR IMMUNOPATHOLOGY RESEARCH LABORATORY, DEPARTMENT OF NEUROLOGY, BAYLOR COLLEGE OF MEDICINE, HOUSTON, TEXAS, UNITED STATES OF AMERICA.

ABSTRACT

Introduction: The mechanisms of molecular and cellular interactions at the blood-nerve barrier (BNB) are incompletely understood.

Objectives: To develop a human in vitro blood-nerve barrier (IVBNB) model that retains essential BNB characteristics.

Methods: Primary human endoneurial endothelial cells (pHEndECs) were isolated and purified from decedent human sciatic nerves via endoneurial stripping, enzymatic digestion, and density centrifugation. The IVBNB model was developed by plating pHEndECs on collagen-coated transwell inserts. pHEndECs were characterized using contrast and electron microscopy, immunocytochemistry, flow cytometry and polymerase chain reaction. IVBNB barrier properties were measured. Preliminary studies of leukocyte trafficking on cytokine-activated pHEndEC monolayers were also performed.

Results: pHEndECs are spindle-shaped, contact inhibited and differentiate to form capillary-like tubes in vitro. They are Ulex Europaeus Agglutinin-1, von Willebrand factor-positive and endocytose acetylated low density lipoprotein. The IVBNB model demonstrated high transendothelial electrical resistances (~160 Ω cm²), low solute permeability to fluoresceinated high molecular weight (70 kDa) dextran (~0.7 %) and histological evidence for intercellular tight junctions. Leukocyte rolling, firm arrest/adhesion, post-arrest locomotion and transmigration were also observed in real-time.

Conclusions: The human IVBNB model provides an avenue to study physiological and pathologic processes at the BNB ex vivo.