Temporal Course of the Motor Effects of Subthalamic DBS After Stopping Stimulation
Michele K. York, Ph.D.1,2, Eugene C. Lai, M.D., Ph.D.1,2, Elizabeth M. Soety, Ph.D.2, Farah Atassi, M.D.,1 Robert G. Grossman, M.D.2, Richard Simpson, M.D.2

1Parkinson’s Disease Research, Education, and Clinical Center (PADRECC) Houston Veterans Affairs Medical Center, 2Baylor College of Medicine; Houston, Texas USA

INTRODUCTION
Bilateral subthalamic (STN) deep brain stimulation (DBS) has been shown to be efficacious for the amelioration of some motor symptoms of Parkinson’s disease (PD). Most notably, STN DBS improves upper extremity tremor, rigidity, and bradykinesia. However, gait and balance are typically less improved and some patients report worsening of speech with the stimulators turned on. Temperli et al. (2003) studied the sequential pattern of motor changes that occurred after turning off the stimulator for up to 4 hours. We examined the UPDRS total motor score and motor subscores serially every 10 minutes for one hour after the stimulator was turned off to evaluate systematically and comprehensively the immediate residual motor benefit of STN DBS.

OBJECTIVE
To investigate the relationship between motor scores and the duration of the residual effect of bilateral STN DBS once the stimulator is turned off.

METHODS

Subjects: 7 clinically improved bilateral male STN DBS patients.

RESULTS

Within one hour of turning the stimulator off:
• Worsening of bradykinesia, tremor and rigidity was detected, with bradykinesia showing the most marked worsening.
• Axial symptoms did not change.
• Speech improved gradually.
• The remainder of the individual motor scores gradually declined or remained stable.

RESULTS (cont.)

The remainder of the individual motor scores gradually declined or remained stable.

CONCLUSIONS
Our results suggest that STN DBS has a brief residual effect on tremor and rigidity, with bradykinesia showing the greatest decline within the first 30 minutes of the stimulator being turned off. Speech showed the most dramatic improvement when the stimulator was turned off, which is consistent with patients’ reports. These results are in agreement with Temperli’s conclusion that STN DBS may differentially affect distinct pathophysiologic motor mechanisms.

Acknowledgments: This research was supported by NIH Grant NS-21889 and Office of Research and Development, Medical Research Service, Department of Veteran’s Affairs.