Impaired Semantic Memory in Temporal Lobe Epilepsy – What is the role of anterior temporal lobectomy?

Heike Schmolck²,4, Michele K.York²,5, Amit Verma¹,²,³, Ian Goldsmith¹,²,³, Daniel Yoshor⁴, Harvey Levin¹, Perry J. Foreman ¹,²,⁵, Eli M. Mizrahi ¹,²,³, and Paul Schulz²,⁵

1. Peter Kellaway Section of Neurophysiology; 2. Dept of Neurology; 3. Baylor Comprehensive Epilepsy Center and 4. Dept of Neurosurgery, Baylor College of Medicine, Houston, TX; 5. Neurology Care Line, Michael DeBakey VAMC Houston TX

Introduction

While there has been much interest in the effect of temporal lobe epilepsy (TLE) and anterior temporal lobectomy (ATL) on episodic memory and naming, other cognitive domains with anatomical ties to the temporal poles have been studied in much less detail. Examples are social cognition, which is tied to the amygdala, and semantic memory, which is anatomically most closely related to the temporal pole and lateral temporal cortices (e.g. Murre et al., 2001).

Impairment in either of these cognitive domains will have a significant impact on a patient’s social and professional functioning.

The term Semantic Memory was introduced by Endel Tulving in 1972 to differentiate the memory for lexical knowledge, which is the vast amount of information we acquire and store about our environment throughout our lifetime, from distinct events defined by a temporal and spatial context (episodic memory). While bilateral damage to the hippocampal formation causes severe impairments in episodic memory (e.g. Squire et al., 2004), it does not cause impairment of language comprehension or semantic memory. On the other hand, more extensive bilateral temporal lobe damage, including damage to the lateral temporal cortex, impairs the ability to give definitions of common animals and objects (Schmolck et al., 2002). In a prior study, we have shown that there is a direct relationship between the degree of impairment on tests of semantic memory and the extent of damage to the lateral temporal cortices, LTC (Schmolck et al., 2002). Also, severe neurodegenerative atrophy of the lateral infratemporal region (Semantic Dementia, or Temporal Variant of Frontal-Dementia) is known to cause deterioration of semantic knowledge (e.g. Hodges et al; 1992; Garrard et al; 1997; Murre et al. 2001).

There are only limited data concerning the effect of longstanding TLE or epilepsy surgery on semantic memory. In a large cohort of left anterior temporal lobectomy (ATL) patients, there was a significant decline in confrontation naming, and more extensive lateral surgical resection was associated with a higher risk of subsequent impairment (Herrman et al., 1999). Auditory naming has also been found more impaired than confrontation naming, and suggested to be highly specific to the difficulties experienced by TLE patients clinically (e.g. Bell et al., 2003). Difficulties that go beyond the retrieval of object names after left ATL have also been found (e.g. synonym judgment; Gliore and Donofrio 2001). One study directly addressed the question of semantic memory in TLE patients before surgery using a definition paradigm, and found significant impairments. However, due to the relatively small sample size, predictors could not be identified (Bell et al. 2001). Our goal is to compare semantic memory in left versus right TLE patients, and to explore the impact of surgery on both groups. In addition to this cross-sectional approach, we also have a prospective study arm comparing semantic memory before and after surgery in the same patient cohort.

Study Goals (ongoing study)

1. Do temporal lobe epilepsy patients have semantic memory deficits?
 A. Do patients with dominant temporal lobe foci have more severe deficits than patients with non-dominant foci?
 B. Can we identify predictors or risk factors for impairment such as age of seizure onset, extent of seizure disorder, age at seizure intractability, type and number of seizures?
 C. Can we characterize the nature of the semantic deficit further by a detailed analysis of patient responses?

2. Does anterior temporal lobectomy have an independent effect on semantic memory in temporal lobe epilepsy?
 A. If there is an effect, is it different in magnitude between dominant and non-dominant anterior temporal lobectomy?

Materials

The term Semantic Memory was introduced by Endel Tulving in 1972 to differentiate the memory about our environment throughout our lifetime, from distinct events defined by a temporal and spatial context (episodic memory). While bilateral damage to the hippocampal formation causes severe impairments in episodic memory (e.g. Squire et al., 2004), it does not cause impairment of language comprehension or semantic memory. On the other hand, more extensive bilateral temporal lobe damage, including damage to the lateral temporal cortex, impairs the ability to give definitions of common animals and objects (Schmolck et al., 2002). In a prior study, we have shown that there is a direct relationship between the degree of impairment on tests of semantic memory and the extent of damage to the lateral temporal cortices, LTC (Schmolck et al., 2002). Also, severe neurodegenerative atrophy of the lateral infratemporal region (Semantic Dementia, or Temporal Variant of Frontal-Dementia) is known to cause deterioration of semantic knowledge (e.g. Hodges et al; 1992; Garrard et al; 1997; Murre et al. 2001).

Participants

We are studying patients with intractable left or right temporal lobe epilepsy (TLE) who are being evaluated for anterior temporal lobectomy (ATL), or patients that have had the surgery within the last 2 years. Patients are recruited from the Baylor Comprehensive Epilepsy Center and the DeBakey VA Hospital. In our prospective study arm, we are examining patients before and after ATL. That study is ongoing, and here we present preliminary results from 40 patients.

So far, all patients were given the Naming to Picture test, and 29 completed the Naming to Picture test. A prior study, we have shown that there is a direct relationship between the degree of impairment on tests of semantic memory and the extent of damage to the lateral temporal cortices, LTC (Schmolck et al., 2002). Also, severe neurodegenerative atrophy of the lateral infratemporal region (Semantic Dementia, or Temporal Variant of Frontal-Dementia) is known to cause deterioration of semantic knowledge (e.g. Hodges et al; 1992; Garrard et al; 1997; Murre et al. 2001).

Materials

We use a selection of the materials described in Hodges et al. (1992), Hodges, Salmon et al. (1992), and Garrard et al. (1997), as well as a test variation intended to minimize the effects of anoma (Definition to Picture). All tests are based on the same line drawings (Snodgrass & Vanderwart, 1980) of 24 animals and 24 objects (or their names).

1. Naming to Picture

What do we call a small green animal that leaps around ponds?

2. Naming to Description (Auditory Naming)

What do you call a bird that has two legs? They are beautiful white feathered creatures. (L TLE - swan)

3. Definition to Picture

“I am going to show you the pictures of something and ask you to describe it to me in as much detail as possible. Try to imagine that you are describing it to someone who has never seen or heard of such a thing. Tell me everything that is important about it. You have one minute for each item.”

Discussion of Preliminary Results

In this cross-sectional study, patients with TLE, both before and after ATL, had difficulty compared to controls on naming and defining common animals and objects. Patients with dominant TLE had significantly more problems than patients with non-dominant TLE. The only significant impact of surgery we have identified thus far was on naming to picture in dominant ATL, which has been previously described (Herrman et al. 1999). However, our prospective study will provide firmer conclusions regarding the impact of ATL on semantics.

In this group, postsurgical patients performed worse on naming tasks but better on the definitions task; this is likely to be due to a nonspecific effect of improved fluency (less AEDs and less seizures) since error rates did not differ.

Patients before and after ATL could not give succinct and detailed definitions of more difficult items; the problems observed were qualitatively similar to the ones described in patients with bilateral lesions, as well as in patients with neurodegenerative disease affecting the LT.

The addition of more study patients will help to answer additional study goals.

References

