MECHANISMS OF LEUKOCYTE TRAFFICKING AT THE HUMAN BLOOD-NERVE BARRIER DURING INFLAMMATION: SELECTIVE EXPRESSION AND FUNCTION OF CHEMOKINES AND CELL ADHESION MOLECULES IN VITRO.

Nejla Yosef, M.S., Robin H. Xia, M.D., Ph.D., Eroboghene E. Ubogu, M.D.
Neuromuscular Immunopathology Research Laboratory, Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America.

INTRODUCTION
Hematogenous leukocyte migration into peripheral nerves and nerve roots is a pathologic hallmark of immune-mediated demyelinating polyradiculopathies (IDP) such as GBS and CIDP.

Leukocyte trafficking across vascular endothelium is a sequential coordinated process dependent on selectins and their glycosylated counter-ligands, chemokines and their receptors, cell adhesion molecules and leukocyte integrins and matrix metalloproteases.

Chemokines are the initial mediators of leukocyte trafficking across chemotactic and haptotactic gradients in vitro and in vivo.

Specific chemokines (e.g. CCL2 [MCP-1], CXCL10 [IP-10]) and their receptors (CCR2, CXCR3) are highly expressed in the peripheral nerves or cerebrospinal fluid or both of patients with IDP compared to patients with non-inflammatory neuropathies.

Expression of endothelial cell adhesion molecules (CAMs) such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) have been described in peripheral nerves of IDP patients and their animal models.

Mechanistic studies are required to determine the mediators of leukocyte trafficking at the blood-nerve barrier.

OBJECTIVE
To determine the roles of selective proinflammatory molecules in leukocyte trafficking at the blood-nerve barrier ex vivo.

METHODS
Primary human endoneurial endothelial cells (pHEndECs, passage 7-8) derived from sciatic nerves were grown to near confluence on 6-well (9.6 cm² surface area) rat tail collagen-coated plates, 6.5 mm diameter, 3.0 µm pore polyester transwell insert membranes or glass coverslips placed in 24-well culture plates.

Cells were treated with 10 U/mL tissue necrosis factor-α (TNF-α) and 20 U/mL interferon-γ (IFN-γ) for 24 hours to mimic early inflammatory events at the blood-nerve barrier. Cells retained in culture media were used to represent basal, resting conditions.

Chemokine antibody array (Raybiotech, Norcross, Georgia, USA) was used to semi-quantitatively determine chemokine expression relative to basal conditions.

Indirect fluorescent immunohistochemistry was used to visualize the effect of cytokine stimulus on surface CAM expression by pHEndECs.

Transendothelial electrical resistance (TEER) was measured using a EVOM voltohmeter with STX2 electrodes.

Peripheral blood mononuclear leukocytes (PBMLs; 55-70% CD3+ T-cells, 10-20% CD14+ monocytes and 5-10% CD19+ B-cells) were isolated from an untreated patient and adaptive immune responses following low dose cytokine stimulation.

Microarrays of cytokine-activated pHEndECs confirmed mechanisms of GBS/CIDP PBML trafficking at the blood-nerve barrier in vitro. Microarrays of cytokine-activated pHEndECs may provide insights to other relevant pro- or anti-inflammatory molecules.

FUTURE DIRECTIONS
Confirm proinflammatory molecular expression by PCR and western blot and determine time course.

Confirm mechanisms of GBS/CIDP PBML trafficking at the blood-nerve barrier in vitro.

Microarrays of cytokine-activated pHEndECs may provide insights to other relevant pro- or anti-inflammatory molecules.

Study effect of inhibition/ gene knockout of selected proinflammatory molecules in mouse models of GBS/CIDP.

RESULTS
pHEndECs express specific chemokines known to participate in the innate and adaptive immune responses following low dose cytokine stimulation. There is increased or induced expression of chemokines implicated in the pathogenesis of GBS and CIDP at the IVBNB following cytokine stimulus.

There is increased expression of P-selectin, ICAM-1 and FN CS-1 with induced E-selectin expression. JAM-A expression was not affected by cytokine stimulus and VCAM-1 expression was not detected or induced on pHEndECs at these passages in vitro.

Cytokine stimulation induces GBS patient PBML trafficking at the IVBNB, dependent on chemokine signaling. Inhibition of CCL2-CCR2, CXCL10-CXCR3, ICAM-1 and the alternatively spliced variant of fibronectin called connecting segment-1 (FN CS1) on PBML trafficking was studied using function-neutralizing antibodies or antagonists.

CONCLUSIONS
pHEndECs express specific chemokines known to participate in the innate and adaptive immune responses following low dose cytokine stimulation. There is increased or induced expression of chemokines implicated in the pathogenesis of GBS and CIDP at the IVBNB following cytokine stimulus.

There is increased expression of P-selectin, ICAM-1 and FN CS-1 with induced E-selectin expression. JAM-A expression was not affected by cytokine stimulus and VCAM-1 expression was not detected or induced on pHEndECs at these passages in vitro.

Cytokine stimulation induces GBS patient PBML trafficking at the IVBNB, dependent on chemokine signaling. Inhibition of CCL2-CCR2, CXCL10-CXCR3, ICAM-1 and FN CS-1-signaling results in reduced PBML trafficking at the IVBNB under flow conditions.