CONCLUSIONS

- Tolerance to deep brain stimulation (DBS) can be described as:
 1. tremor rebound with a temporary increase of tremor intensity over the preoperative state after switching off DBS (Kronenbeger 2009).
 2. habituation, which is the loss of sustained tremor control over a short duration of follow-up (Barbe 2011), or
 3. late therapy failure that may occur after at least one year of satisfactory control of tremor with DBS (Pilitsis 2008).

- Causes not completely understood. There include:
 - Natural disease progression
 - Inadequate electrode location
 - Resolution of microhalothamyotomy effects from surgery
 - Adaptation of neural networks to chronic localized stimulation (Barbe 2011).

- Existing research shows:
 - 13-40% of patients with essential tremor (ET) implanted in the thalamus (VM) develop tolerance, despite proper lead placement (Pilitsis et al., 2008).
 - A prospective study found 73% of ET patients experienced waning benefit of stimulation, as early as 3 months following implantation (Shih et al., 2013).
 - Loss of acute benefit from programming in 54% of electrodes in ET patients with VM stimulation by 10 weeks (Barbe et al., 2011).
 - Rebound is described in ET and Parkinson’s disease (PD) (Hantz et al., 2009) but is not well-characterized.

- Objective: To determine factors and characteristics associated with development of tolerance to DBS across disease states and targets.

METHODS

- Prospective questionnaire study with retrospective chart review in a 3-month cross-sectional population of a tertiary Movement Disorders Center.
- Inclusion criteria:
 - > 18 years old
 - diagnosis of ET, PD, or dystonia as determined by a movement disorder specialist.
 - lead implantation in the VM, globus pallidus interna (GPi), or the subthalamic nucleus (STN).
- Exclusion criteria:
 - Stimulator in place < 6 months
- Prospective evaluation included a Clinician-administered survey to identify diagnosis, disease onset, stimulator placement date, target and laterality for all patients who agreed to complete surveys.
- Retrospective chart review to identify diagnosis, disease onset, stimulator placement date, target and laterality for all patients who agreed to complete surveys.
- Information was extracted to a database for analysis. Statistical methods included 2-tailed Fisher’s exact test to compare incidence of tolerance across disease states and targets. Mann Whitney U to compare self-report measures in patients with and without tolerance. Kruskal-Wallis and ANOVA* to compare self-report measures among those experiencing tolerance across disease states and targets, and 2-tailed t-test to compare patient characteristics.

RESULTS

- Table 1: Patient Characteristics
 - Gender
 - M: 14
 - F: 9
 - Analysis by disease state:
 - 25.6% (n = 11) PD
 - 56.3% (n = 9) ET
 - 20% (n = 2) dystonia
 - (P = 0.004)*
 - Analysis by target:
 - 32.3% (n = 11) STN
 - 52.6% (n = 10) VM
 - 6.3% (n = 1) GPi
 - (P = 0.011)*
 - Analysis by disease state by target:
 - 20.6% (n = 7) STN
 - 47.4% (n = 9) VM
 - 18.8% (n = 3) GPi
 - (P = 0.010)*
 - *2-tailed Fisher’s exact test

- Table 2: Characteristics of patients experiencing habituation
 - Mean age (years) at time of survey
 - Mean disease duration (years) at time of survey
 - Mean time (years) since DBS at time of survey
 - Time of survey
 - Analysis by disease state:
 - 25.6% (n = 11) PD
 - 56.3% (n = 9) ET
 - 20% (n = 2) dystonia
 - (P = 0.004)*
 - Analysis by target:
 - 32.3% (n = 11) STN
 - 52.6% (n = 10) VM
 - 6.3% (n = 1) GPi
 - (P = 0.011)*
 - Analysis by disease state by target:
 - 20.6% (n = 7) STN
 - 47.4% (n = 9) VM
 - 18.8% (n = 3) GPi
 - (P = 0.010)*
 - *2-tailed Fisher’s exact test

- Table 3: Characteristics of patients experiencing rebound
 - Mean age (years) at time of survey
 - Mean disease duration (years) at time of survey
 - Mean time (years) since DBS at time of survey
 - Time of survey
 - Analysis by disease state:
 - 25.6% (n = 11) PD
 - 56.3% (n = 9) ET
 - 20% (n = 2) dystonia
 - (P = 0.004)*
 - Analysis by target:
 - 32.3% (n = 11) STN
 - 52.6% (n = 10) VM
 - 6.3% (n = 1) GPi
 - (P = 0.011)*
 - Analysis by disease state by target:
 - 20.6% (n = 7) STN
 - 47.4% (n = 9) VM
 - 18.8% (n = 3) GPi
 - (P = 0.010)*
 - *2-tailed Fisher’s exact test

- Table 4: Patient self-report measures on efficacy, satisfaction, and global impression of change with DBS in patients reporting habituation by stimulator target
 - Overall efficacy of DBS
 - Overall satisfaction with DBS
 - Patient global impression of change
 - + rebound
 - *2-tailed Fisher’s exact test

- Table 5: Patient self-report measures on efficacy, satisfaction, and global impression of change with DBS in patients reporting rebound by stimulator target
 - Overall efficacy of DBS
 - Overall satisfaction with DBS
 - Patient global impression of change
 - + rebound
 - *2-tailed Fisher’s exact test

REFERENCES

Clinical Manifestations of Tolerance to Deep Brain Stimulation

Deepal Shah, BS, BA and Johoi Jimenez-Shahed, M.D.
Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas