

Clinical Manifestations of Tolerance to Deep Brain Stimulation

Deepal Shah, BS, BA and Joohi Jimenez-Shahed, M.D.

Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas

BACKGROUND

- Tolerance to deep brain stimulation (DBS) can be described as
 - 1. tremor rebound with a temporary increase of tremor intensity over the preoperative state after switching off DBS (Kronenbuerger 2006)
- 2. habituation, which is the loss of sustained tremor control over a short duration of follow-up (Barbe 2011), or
- 3. late therapy failure that may occur after at least one year of satisfactory control of tremor with DBS (Pilitsis 2008).
- Causes not completely understood. Theories include:
- Natural disease progression
- Inadequate electrode location
- Resolution of microthalamotomy effects from surgery
- Adaptation of neural networks to chronic localized stimulation (Barbe 2011).

Existing research shows:

- 13-40% of patients with essential tremor (ET) implanted in the thalamus (ViM) develop tolerance, despite proper lead placement (Pilitsis et al, 2008).
- A prospective studies found 73% of ET patients experienced waning benefit of stimulation, as early as 3months following implantation (Shih et al, 2013)
- Loss of acute benefit from programming in 54% of electrodes in ET patients with ViM stimulation by 10 weeks (Barbe et al, 2011)
- Rebound is described in ET and Parkinson's disease (PD) (Hariz 1999) but is not well-characterized.
- ❖ Objective: To determine factors and characteristics associated with development of tolerance to DBS across disease states and targets.

METHODS

❖ Prospective questionnaire study with retrospective chart review in a 3-month cross-sectional population of a tertiary Movement Disorders Center

Inclusion criteria:

- > 18 years old
- diagnosis of ET, PD, or dystonia as determined by a movement disorders specialist,
- lead implantation in the ViM, globus pallidus interna (GPi), or the subthalamic nucleus (STN)

Exclusion criteria

- Stimulator in place < 6 months
- Prospective evaluation included a Clinician-administered survey either in person or by phone consisting of 8-items:
- o whether the patient experienced habituation or rebound,
- patient rating of their symptom control
- o patient satisfaction with the treatment
- a patient-rated version of the Clinical Global Impression Scale compared the positive effects of the DBS with the effects of losing the benefit of an adjustment
- Retrospective chart review to identify diagnosis, disease onset, stimulator placement date, target and laterality for all patients who agreed to complete surveys
- ❖ Information was extracted to a database for analysis. Statistical methods included 2-tailed Fisher's exact test to compare incidence of tolerance across disease states and targets, Mann Whitney U to compare self-report measures in patients with and without tolerance, Kruskal-Wallis and ANOVA* to compare self-report measures among those experiencing tolerance across disease states and targets, and 2-tailed t-test* to compare patient characteristics.

RESULTS

Table 2: Characteristics of patients experiencing habituation

diagnosis and target

Mean age (years) at time of survey				Mean disease duration (years) at time of survey			Mean time (years) since DBS at time of survey		
Target	+habit	- habit	Р	+habit	- habit	Р	+ habit	- habit	Р
ViM (n=9)	68.2	74.6	0.2	32.9	39.3	0.4	4.6	6.1	0.5
STN (n=7)	62.3	64.2	0.6	14.6	15.1	0.8	4.7	4.6	0.9
GPi (n=3)	56	62.2	0.3	21.3	17.8	0.5	7.3	3.9	0.2

Table 3: Characteristics of patients experiencing rebound

Mean age (years) at time of survey				Mean disease duration (years) at time of survey			Mean time (years) since DBS at time of survey		
Target	+rebound - rebound		Р	+rebound	- rebound	Р	+rebound	- rebound	Р
ViM (n=10)	68.8	71.9	0.5	34.3	32	0.8	6.1	4.4	0.4
STN (n=11)	62.6	64.3	0.6	15.5	14.8	0.7	5	4.5	0.6
GPi (n=1)	66	60.7	0.6	17	18.6	0.9	3	4.7	0.7

Table 4: Patient self-report measures on efficacy, satisfaction, and global impression of change with DBS in patients reporting habituation by stimulator target

	Overall efficacy of DBS			Overall	satisfaction DBS	on with	Patient global impression of change			
	+habit	- habit	Р	+habit	- habit	Р	+ habit	- habit	Р	
ViM	3	1.4	0.0601	5.1	6.8	0.012	6.8	2.4	0.0048	
STN	3.1	1.5	0.067	5	6.5	0.12	8	2.8	0.0027	
GPi	1.7	1.4	0.41*	6.3	6.5	0.85*	5.3	2.2	0.036*	
K-W	0.722			0.654			0.811			

Table 5: Patient self-report measures on efficacy, satisfaction, and global impression of change with DBS in patients reporting rebound by stimulator target

	Overall	efficacy of	DBS	Overall s	atisfaction	with	Patient global impression of change		
					DBS				
	+rebound	-rebound	Р	+rebound	- rebound	Р	+rebound	- rebound	Р
ViM	2.8	1.4	0.142	5.4	6.7	0.112	6.2	2.6	0.013
STN	2.3	1.6	0.01	5.8	6.3	0.087	4.8	3.4	0.162
GPi	1	1.5	0.4*	6	6.5	0.67*	1	2.9	0.45*
ANOVA*	0.6*			0.8*			0.4*		

*Because of small sample size for GPi and Dystonia patients, a parametric approach (t-test, ANOVA) was used for analysis instead of a nonparametric approach (Mann Whitney U, Kruskal-Willis).

GPi

M: 5

F: 11

61 years

PD: 8

Dystonia: 8

19 years

5 years

13

❖ 27.5% (n = 19) reported

• 20.6% (n = 7) STN

• 47.4% (n = 9) ViM

• 18.8% (n = 3) GPi

Analysis by disease state:

20% (n = 2) dystonia

• 20.9% (n = 9) PD

• 50% (n = 8) ET

*2-tailed Fisher's exact test

❖ 31.9% (n = 22) reported

symptoms of rebound

• 32.3% (n = 11) STN

• 52.6% (n = 10) ViM

❖ Analysis by disease state:

20% (n = 2) dystonia

• 25.6% (n = 11) PD

• 56.3% (n = 9) ET

*2-tailed Fisher's exact test

• 6.3% (n = 1) GPi

Analysis by target:

 $(P = 0.011)^*$

 $(P = 0.064)^*$

❖ Analysis by target:

 $(P = 0.103)^*$

 $(P = 0.107)^*$

symptoms of habituation

CONCLUSIONS

- ❖ Presence of habituation and rebound should be considered when performing clinical evaluations on any patient treated with DBS.
- tolerance to stimulation is not unique to ViM stimulation or ET,
 though it may be more common in this target and this disease.
- Factors such as age, disease duration, and duration of DBS therapy do not appear to play a significant role.
- recurrent symptoms other than tremor (e.g. bradykinesia, rigidity, dystonia) may be experienced.
- ❖ Tolerance to DBS influences patient perceptions of DBS efficacy and satisfaction
- Patients experiencing habituation generally seemed to have significantly lower self-reported efficacy of DBS and significantly lesser satisfaction with DBS therapy than those who did not experience habituation.
- Rebound symptoms led to significantly lower satisfaction and PGI in the ViM group, but did not differ by disease state
 - ✓ However, rebound itself may be a less-recognized phenomenon (by both patients and clinicians) since most patients leave DBS therapy on all the time.
- ❖ A unique finding in our survey study was the laterality experienced by multiple patients implanted bilaterally.
- 80% of patients implanted bilaterally who experienced worse tolerance unilaterally did so on the left side.
- No direct association between handedness and laterality was found.
- Study limitations: retrospective nature, lack of objective assessments to confirm patient reports of tolerance, and small sample size, especially among dystonia patients.
- Further, prospective studies, including larger Ns of dystonia patients and investigations into laterality of tolerance symptoms, are warranted.

REFERENCES

- . Kronenbuerger M, Fromm C, Block F, et al. (2006) On Demand Deep Brain Stimulation for Essential Tremor: A Report on Four Cases. Movement Disorders Vol 21. No. 3
- 2. Pilitsis JG, Metman LV, Toleikis JR, et al. (2008) Factors involved in long-term efficacy of
- deep brain stimulation of the thalamus for essential tremor. J Neurosurg 109: 640–646.

 Shih LC, LaFaver K, Lim C, et al. (2013) Loss of benefit in VIM thalamic deep brain
- stimulation (DBS) for essential tremor (ET): How prevalent is it? Parkinsonism and Related Disorders 19: 676-679
- 4. Barbe MT, Liebhart L, Matthias R, et al. (2011) Deep brain stimulation in the nucleus ventralis intermedius in patients with essential tremor: habituation of tremor suppression. J Neurol 258:434-439
- Hariz M, Shamsgovara P, Johansson F, et al. (1999) Tolerance and Tremor Rebound following Long-Term Chronic Thalamic Stimulation for Parkinsonian and Essential Tremor Stereotact Funct Neurosurg. 72: 208-218.