Anti-GABAB_B receptor limbic encephalitis is an uncommon cause of limbic encephalitis that presents with early and prominent seizures along with typical features of limbic encephalitis such as memory impairment and behavioral changes. Antibodies targeted against the GABAB_B receptor were first identified in patients with limbic encephalitis by Lancaster et al in 2009. In this case series, 7 of 15 patients had an underlying neoplasm. Frequent co-occurrence of other antibody types in these patients likely suggest a tendency to autoimmunity and possibly an anti-tumor immune response in those cases with an underlying neoplasm.

Basic laboratory studies, including a complete blood count, metabolic panel, and ESR were normal. MRI of the brain showed FLAIR hyperintensity in the limbic region along with subtle leptomeningeal enhancement in the parieto-occipital region (Fig 1). Diffuse loss slow background was noted on EEG. Cerebrospinal fluid (CSF) analysis demonstrated 37 WBC/mm³ with 90% lymphocytes and protein 48 mg/dl. Glucose was normal and viral studies were negative.

Serum and CSF samples were sent for a limbic encephalitis work-up. High titers of antibody against the GABAB_B receptor were detected in both the serum and the CSF. CT chest, abdomen and pelvis and testicular ultrasound did not reveal an underlying neoplasm. PET scan was attempted on multiple occasions but was not possible because of patient’s severe agitation.

Our patient’s clinical presentation and high titer of anti-GABAB_B receptor antibodies in the serum and CSF strongly suggest anti-GABAB_B receptor encephalitis. Leptomeningeal enhancement on MRI in our patient is atypical, although it has been reported in a recently published report. We were unable to find an underlying neoplasm. In one series, an underlying malignancy was detected in one-third of patients, mostly small cell lung cancer. Another recent study identified small cell lung cancer in 8 of 10 patients. Given the frequent association of underlying malignancy, an exhaustive search for a neoplasm should be undertaken.

Anti-GABAB_B receptor limbic encephalitis that is managed with immunotherapy in addition to treatment of the underlying tumor often results in improvement. In a series of 15 patients, 7 of which had an underlying tumor, 9 patients responded to immunotherapy and/or treatment of the underlying tumor whereas 4 patients who received no treatment showed not improvement. Although there are no guidelines on treatment of limbic encephalitis, high dose steroids, IVIG, and plasmapheresis are usually the first line agents with rituximab and other immunosuppressants reserved for patients who remain unresponsive.

Anti-GABAB_B receptor limbic encephalitis is uncommon. However, recognition of this condition as well as the other types of limbic encephalitis is important as prompt and aggressive treatment with immunotherapy and treatment of the underlying tumor can be effective. Further studies are required to help construct useful guidelines on treatment of the condition.

REFERENCES

Figure 1. MRI brain.

A. T2 FLAIR sequence demonstratesilateral limbic hyperintensities.
B. T1 sequence demonstrates parieto-occipital leptomeningeal enhancement.