skip to content »


Houston, Texas

CMB research is conducted at Baylor College of Medicine in the Texas Medical Center, Houston.
Integrative Molecular and Biomedical Sciences Graduate Program
not shown on screen

Marco Sardiello, Ph.D.

Marco Sardiello, Ph.D.

Assistant Professor, Department of Molecular & Human Genetics
Ph.D.: University of Bari, Italy
Postdoctoral training: Telethon Institute of Genetics and Medicine, Italy

Research Interests:

My laboratory uses genetics, cell biology and systems biology approaches to study how the cell regulates its metabolic programs and how dysfunctions in these programs lead to neurological disease. Our ultimate goal is to translate our knowledge of these regulatory networks into therapeutic approaches for neurodegenerative disorders.

Using systems biology approaches, we discovered and characterized a gene network regulating lysosomal biogenesis and function. Lysosomes are cellular organelles central to degradation and recycling processes. Defects in genes participating in lysosomal function lead to the accumulation of toxic substances into the cell, which ultimately results in diseases collectively known as lysosomal storage disorders (LSDs). We discovered that the transcription factor EB (TFEB) is a master regulator of the biogenesis and activity of lysosomes. Under aberrant lysosomal storage conditions, TFEB translocates from the cytoplasm to the nucleus, resulting in the activation of genes with lysosomal function. TFEB overexpression induces lysosomal biogenesis and increases the clearance of ceroid lipopigment, glycosaminoglycans and mutant huntingtin, which are pathologically accumulated in Batten disease, mucopolysaccharidoses and Huntington’s disease, respectively. We are now using genetic and chemical tools to modulate TFEB activity in mouse models of neurodegenerative diseases to enhance the clearance of stored molecules and determine the effects on disease symptoms.

My laboratory is also investigating other regulatory networks. We have discovered a mitochondrial gene network that regulates energy metabolism in Drosophila. Nuclear and mitochondrial genes involved in oxidative phosphorylation are connected in a common regulatory circuit, for which we have now identified a candidate master regulator. Drosophila mutants for this gene display severe impairment of energy metabolism and die at the larval stage. Surprisingly, this gene network is analogous, but non homologous, to the mammalian mitochondrial network, being based on different molecules and regulatory signals.

Additional metabolic gene networks regulated by transcription factors or microRNAs are currently under study. These studies aim at dissecting the regulatory circuitry that controls the basal metabolism of the cell.

Selected Publications:

1. Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, Segatori L (2013) TFEB regulates lysosomal proteostasis. Hum. Mol. Genet. Feb 18. doi:10.1093/hmg/ddt052. PubMed PMID: 23393155

2. Gennarino VA, D'Angelo G, Dharmalingam G, Fernandez S, Russolillo G, Sanges R, Mutarelli M, Belcastro V, Ballabio A, Verde P, Sardiello M, Banfi S (2012). Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 22(6): 1163-72. PubMed PMID: 22345618

3. Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A (2011). Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20(19): 3852-66. PubMed PMID: 21752829

4. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011). TFEB links autophagy to lysosomal biogenesis. Science 332(6036): 1429-33. PubMed PMID: 21617040

5. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009). A gene network regulating lysosomal biogenesis and function. Science 325(5939): 473-7. PubMed PMID: 19556463

6. Sardiello M, Annunziata I, Roma G, Ballabio A (2005). Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum. Mol. Genet. 14(21): 3203-17. PubMed PMID: 16174644

7. Sardiello M, Tripoli G, Romito A, Minervini C, Viggiano L, Caggese C, Pesole G (2005). Energy biogenesis: one key for coordinating two genomes. Trends Genet. 21(1): 12-6. PubMed PMID:15680507

8. Sardiello M, Licciulli F, Catalano D, Attimonelli M, Caggese C (2003). MitoDrome: a database ofDrosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion.Nucleic Acids Res. 31(1): 322-4. PubMed PMID: 12520013

For more publications, see listing on PubMed.

Contact Information:

Department of Molecular and Human Genetics
Baylor College of Medicine
One Baylor Plaza, BCM225
Houston, TX 77030
Phone: 832-824-8871
Fax: 713-798-8728

Updated: 3/13

E-mail this page to a friend