skip to content »

Molecular and Human Genetics

Houston, Texas

Department of Molecular and Human Genetics
Department of Molecular and Human Genetics
not shown on screen

Marco Sardiello, Ph.D.

Marco Sardiello, Ph.D.

Assistant Professor of Molecular and Human Genetics

Education

B.S., University of Bari, 1999
Ph.D., University of Bari, 2003
Postdoc, Telethon Institute of Genetics and Medicine, 2009

Research Interests

My laboratory uses genetics, cell biology and systems biology approaches to study how the cell regulates its metabolic programs and how dysfunctions in these programs lead to neurological disease. Our ultimate goal is to translate our knowledge of these regulatory networks into therapeutic approaches for neurodegenerative disorders.

Using systems biology approaches, we discovered and characterized a gene network regulating lysosomal biogenesis and function. Lysosomes are cellular organelles central to degradation and recycling processes. Defects in genes participating in lysosomal function lead to the accumulation of toxic substances into the cell, which ultimately results in diseases collectively known as lysosomal storage disorders (LSDs). We discovered that the transcription factor EB (TFEB) is a master regulator of the biogenesis and activity of lysosomes. Under aberrant lysosomal storage conditions, TFEB translocates from the cytoplasm to the nucleus, resulting in the activation of genes with lysosomal function. TFEB overexpression induces lysosomal biogenesis and increases the clearance of ceroid lipopigment, glycosaminoglycans and mutant huntingtin, which are pathologically accumulated in Batten disease, mucopolysaccharidoses and Huntington’s disease, respectively. We are now using genetic and chemical tools to modulate TFEB activity in mouse models of neurodegenerative diseases to enhance the clearance of stored molecules and determine the effects on disease symptoms.

My laboratory is also investigating other regulatory networks. We have discovered a mitochondrial gene network that regulates energy metabolism in Drosophila. Nuclear and mitochondrial genes involved in oxidative phosphorylation are connected in a common regulatory circuit, for which we have now identified a candidate master regulator. Drosophila mutants for this gene display severe impairment of energy metabolism and die at the larval stage. Surprisingly, this gene network is analogous, but non homologous, to the mammalian mitochondrial network, being based on different molecules and regulatory signals.

Additional metabolic gene networks regulated by transcription factors or microRNAs are currently under study. These studies aim at dissecting the regulatory circuitry that controls the basal metabolism of the cell.

Selected Publications

  1. Mauri V, Lotfi P, Segatori L, Sardiello M (2013). A rapid and sensitive method for measuring N-acetylglucosaminidase activity in cultured cells. PLoS One 8(6): e68060. PubMed PMID: 23840811
  2. Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, Segatori L (2013). TFEB regulates lysosomal proteostasis. Hum. Mol. Genet. 22(10): 1994-2009. PubMed PMID: 23393155
  3. Gennarino VA, D'Angelo G, Dharmalingam G, Fernandez S, Russolillo G, Sanges R, Mutarelli M, Belcastro V, Ballabio A, Verde P, Sardiello M, Banfi S (2012). Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 22(6): 1163-72. PubMed PMID: 22345618
  4. Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R, Ballabio A (2011). Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21(3): 421-30. PubMed PMID: 21889421
  5. Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A (2011). Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20(19): 3852-66. PubMed PMID: 21752829
  6. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011). TFEB links autophagy to lysosomal biogenesis. Science 332(6036): 1429-33. PubMed PMID: 21617040
  7. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009). A gene network regulating lysosomal biogenesis and function. Science 325(5939): 473-7. PubMed PMID: 19556463
  8. Gennarino VA, Sardiello M, Avellino R, Meola N, Maselli V, Anand S, Cutillo L, Ballabio A, Banfi S (2009). MicroRNA target prediction by expression analysis of host genes. Genome Res. 19(3): 481-90. PubMed PMID: 19088304
  9. Sardiello M, Cairo S, Fontanella B, Ballabio A, Meroni G (2008). Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol. Biol. 8: 225. PubMed PMID: 18673550
  10. Sardiello M, Annunziata I, Roma G, Ballabio A (2005). Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum. Mol. Genet. 14(21): 3203-17. PubMed PMID: 16174644
  11. Sardiello M, Tripoli G, Romito A, Minervini C, Viggiano L, Caggese C, Pesole G (2005). Energy biogenesis: one key for coordinating two genomes. Trends Genet. 21(1): 12-6. PubMed PMID: 15680507
  12. Sardiello M, Licciulli F, Catalano D, Attimonelli M, Caggese C (2003). MitoDrome: a database of Drosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion. Nucleic Acids Res. 31(1): 322-4. PubMed PMID: 12520013

Contact Information

Marco Sardiello, Ph.D.
Department of Molecular and Human Genetics
Baylor College of Medicine
One Baylor Plaza, MS BCM225
Houston, TX, 77030, U.S.A.

Phone: 832-824-8871
Fax: 713-798-8728
E-mail:

E-mail this page to a friend