Cytokinesis inhibition in the liver drives polyploidization and HCC prevention

Hao Zhu, MD October 17, 2020

UT Southwestern Medical Center

CHILDREN'S MEDICAL CENTER RESEARCH INSTITUTE AT UT SOUTHWESTERN

Relentless discovery toward the treatments of tomorrow

Conflicts of interest

I consult for 28-7 Therapeutics

I collaborate with Alnylam Therapeutics

I own stock in Ionis

Chronic liver disease from any cause ultimately results in cirrhosis

High bilirubin

Encephalopathy

Hepatocellular carcinoma

We dissect the cellular + genetic events culminating in cirrhosis, liver cancer

We dissect the cellular + genetic events culminating in cirrhosis, liver cancer

Hypothesis:

Polyploidy in hepatocytes allows the liver to safely sustain mutagenesis (w/o carcinogenesis) during wound healing

Up to 90% of mouse and 50% of human hepatocytes are polyploid

Celton-Morizur, et al. JCI, 2009

Liver diseases involve chronic injury, eventually leading to HCC

How does chronic injury affect the ploidy in normal liver?

Chronic injury increases hepatic polyploidy

Chronic Carbon tetrachloride (CCl₄) injury

A genetic switch to study ploidy: ANLN (Anillin) cytokinesis protein

Zhang S, et al. 2017. *Gastroenterology* Ralf Kittler, et al. 2007. *Nature Cell Biology* Green R A, et al., Cytokinesis in animal cells[Annual review of cell and developmental biology, 2012

Inducible TG-shAnIn mice are a tool to increase polyploidy

Knocking down ANLN in mice increases polyploidy

Does increased ploidy influence chronic injury-induced HCC?

Polyploidy prevents chronic injury-induced HCC development

Nodule quantification

Diploidy increases chronic injury-induced HCC development

Does polyploidy influence pathogenic steps to cancer?

Does polyploidy influence pathogenic steps to cancer?

Can polyploid cells proliferate and regenerate the liver?

Polyploid cells can regenerate the liver after acute injury

Polyploidy does not affect gene expression in regeneration

Polyploid hepatocytes readily divide, with high fidelity

Mitosis staining in the regenerating liver

αTubulin yTubulin Hoechst

In human livers, aneuploid nodules are rare

HS197N1-N4

HS263N1-N9

HS197N5-N9

HS190N1-N9

HS288N1-N9

10 mm

Tumor suppressor loss of heterozygosity reduced in polyploids

Polyploid hepatocytes protect from cancer while maintaining regenerative capacity in chronic liver disease

DOES NOT CAUSE

Chromosome missegregation

Aneuploidy

Polyploidy could be an adaptation to buffer against TSG mutations.

How do polyploids ensure segregational fidelity during mitosis?

Cytokinesis inhibition and polyploidization with *ANLN* siRNAs for HCC prevention?

Persistent ANLN shRNA inhibition: DEN mutagen HCC model

Persistent ANLN shRNA inhibition: <u>chronic</u> DEN + CCI4 injury

Floxed ANLN genetic models

ANLN knockout livers appear grossly normal, regenerate after hepatectomy, and are highly polyploid.

Assessing ANLN knockout efficiency using AAV-Cre in NASH

AAV-Cre effect disappears in 3 months. Second dose has no effect (possibly due to immunogenicity)

Despite poor KO at 3 months, NASH related HCC is suppressed at 9 months of age

ANLN KO via AAV-Cre prevents liver damage in NASH model

ANLN KO via AAV-Cre prevents steatosis in NASH model

N = 5 and 5 mice shown here

ANLN KO via AAV-Cre suppresses fibrogenesis in NASH

Can this be replicated with Alnylam siRNAs?

Knockdown efficiencies of GalNAc conjugated siAnIns

in vitro:

in vivo:

Ploidy distribution of C3h mice treated with Alnylam siAnIn

GalNAc siAnIn did not affect acute or chronic tissue repair

Multiple HCC models are prevented by GalNAc-siANLN

Summary: safe, and effective for HCC prevention

Prospective clinical use:

Patient with cirrhosis and small Lirads/hcc lesion <2 cm. Patient with early HCC resected or ablated.

Acknowledgements

CHILDREN'S MEDICAL CENTER RESEARCH INSTITUTE AT UT SOUTHWESTERN

