Risk of HCC in NAFLD/NASH

Fasiha Kanwal, MD, MSHS Professor of Medicine Baylor College of Medicine Houston, Texas

Spectrum of NAFLD

- Simple fatty liver is histologically characterized by macrovesicular steatosis with no additional pathology
- Fatty liver is generally considered benign.

College of

Medicine

- NASH is histologically advanced fatty liver. It is characterized by <u>steatosis</u>, inflammation, <u>ballooning</u>, Mallory's hyaline, and <u>fibrosis</u>.
- It can lead to cirrhosis and liver failure.

Prevalence of NAFLD

Baylor College of

Medicine

Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease

Fasiha Kanwal,^{1,2,3} Jennifer R. Kramer,^{2,3} Srikar Mapakshi,^{2,3} Yamini Natarajan,¹ Maneerat Chayanupatkul,¹ Peter A. Richardson,^{2,3} Liang Li,⁴ Roxanne Desiderio,^{2,3} Aaron P. Thrift,^{1,5,6} Steven M. Asch,^{7,8} Jinna Chu,² and Hashem B. El-Serag^{1,2,3}

Gastroenterology 2018;155:1828-1837

Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease

Fasiha Kanwal,^{1,2,3} Jennifer R. Kramer,^{2,3} Srikar Mapakshi,^{2,3} Yamini Natarajan,¹ Maneerat Chayanupatkul,¹ Peter A. Richardson,^{2,3} Liang Li,⁴ Roxanne Desiderio,^{2,3} Aaron P. Thrift,^{1,5,6} Steven M. Asch,^{7,8} Jinna Chu,² and Hashem B. El-Serag^{1,2,3}

Characteristic	%	Characteristic	%
Age, mean (SD)	55.5 (13)	Diabetes	30.0
Race		Hypertension	71.8
White	69.0	Dyslipidemia	72.0
African American	11.4	BMI, mean (SD)	31.5 (5.6)
Hispanic	5.4	Coronary artery disease	21.3
Gender		Chronic obstructive lung	96
Men	94.5	disease	
Women	5.5	APRI, mean (SD)	0.4 (0.46)

Baseline Characteristics of 237,683 NAFLD Patients

Baylor College of Medicine

APRI: AST to platelet ratio index

Gastroenterology 2018;155:1828-1837

HCC in Patients with NAFLD

Baylor College of Medicine

Kanwal F, Gastroenterology 2018

HCC in Patients with NAFLD

Kanwal F, Gastroenterology 2018

HCC in Patients with NAFLD Cirrhosis

Annual incidence rate of HCC:

0.02 per 1000 PY in controls
0.08 per 1000 PYs in NAFLD <u>without</u> cirrhosis
10.6 per 1000 PYs in NAFLD <u>with</u> cirrhosis

Among patients with NAFLD cirrhosis: HCC risk ranged from 1.6 to 23.7 per 1000 PYs based on other demographic characteristics

Kanwal F, Gastroenterology 2018

Trends in metabolic traits in NAFLD

Trends in metabolic traits in NAFLD

Factors associated with risk of progression to HCC in NAFLD

Characteristics	Adjusted hazard ratio (95% CI)		
Age	1.07 (1.06-1.08)		
Female	0.55 (0.24-1.23)		
Race (ref: white)			
African Americans	0.78 (0.51-1.19)		
Hispanic	1.54 (1.01-2.35)		
Diabetes	2.80 (2.18-3.59)		
Hypertension	1.28 (0.76-2.16)		
Dyslipidemia	1.05 (0.76-1.44)		
Obesity	1.44 (1.14-1.82)		

Additive effect of metabolic traits on progression to HCC

Kanwal, Hepatology 2020

Additive effect of metabolic traits on progression to HCC

Diabetes, hypertension & obesity

Kanwal, Hepatology 2020

Summary - 1

- Risk of HCC was higher in NAFLD patients than that observed in general clinical population.
- The absolute risk of HCC was <u>higher</u> than the <u>accepted thresholds for</u> <u>HCC surveillance</u> for most patients with <u>NAFLD cirrhosis</u>
- Among metabolic traits, diabetes had the strongest association with HCC
- Diabetic patients with co-existing hypertension and obesity may be important targets for secondary prevention of NAFLD-related HCC

HCV vs. NAFLD

- Relative Risk of HCC
 - Compared to NAFLDcontrols (7.6 fold)
- Absolute Risk of HCC
 - HCC in NAFLD
 - 0.02 per 100 at 9 years
 - HCC in NAFLD-related cirrhosis
 - 1.0 to 2.0 per 100

- Relative Risk of HCC
 - Compared to HCVcontrols (25 fold)
 - Absolute Risk of HCC
 - HCC in HCV
 - 1 per 100 at 30 years
 - HCC in HCV-related
 - cirrhosis
 - 3.5 per 100 [1-7]

Prevalence of NAFLD

Baylor College of

Medicine

Hepatology, Vol.69, No.6, 2019

Contemporary risk factors for cirrhosis in the U.S Data from Trans-Texas HCC Consortium (THCCC)

- Large prospective cohort of patients with cirrhosis
- Started in 5 centers (2016)
 - Extended to 7 centers (2019)

Etiology of cirrhosis

33.1% cured hepatitis C virus infection (HCV)
30.0% alcohol
23.3% nonalcoholic fatty liver disease
16.1% active HCV
2.5% hepatitis B virus (HBV) infection

Contemporary risk factors for cirrhosis in the U.S Data from Trans-Texas HCC Consortium (THCCC)

- Large prospective cohort of patients with cirrhosis
- Started in 5 centers (2016)
 - Extended to 7 centers (2019)

Etiology of cirrhosis

33.1% cured hepatitis C virus infection (HCV)
30.0% alcohol
23.3% nonalcoholic fatty liver disease
16.1% active HCV
2.5% hepatitis B virus (HBV) infection

75% has metabolic dysfunction without other active risk factors

Mathematical models project that NAFLD will account for 48% of the HCC burden, becoming the leading cause of HCC in the U.S in the next 2 decades

- Dyson observed a 10-fold increase in MAFLD-HCC between 2000 and 2010 in Newcastle, U.K.
 - A recent study estimated MAFLD will result in 135,000 HCC cases in the U.S. between 2015 and 2030 20

HCC can occur in the absence of cirrhosis in NAFLD

- 1500 patients with HCC seen in the VA (2005-2020)
- About 13% of patients with HCC in the VA did not have cirrhosis.
- NAFLD was the main risk factor for HCC in the absence of cirrhosis (odds ratio, 5.4, 95% CI, 3.4-8.5)

Challenges in reducing NAFLD HCC-related mortality

Challenges in reducing NAFLD HCC-related mortality

Quality of Cancer Care Continuum (QCCC)

Baylor College of Medicine

Zaman SN,. Cancer 1990;65:1607-1 Walker M, Kanwal F. APT 2016 Kanwal F, El-Serag H, Gastroenterology 2018

Challenges in reducing NAFLD HCC-related mortality

Early detection **biomarkers** needed for early detection of HCC

> Zaman SN,. Cancer 1990;65:1607-1 Walker M, Kanwal F. APT 2016 Kanwal F, El-Serag H, Gastroenterology 2018

Summary - 2

- NAFLD is projected to become the leading etiology of HCC in the U.S.
- The absolute risk of HCC is higher than the accepted thresholds for HCC surveillance for most patients with NAFLD cirrhosis
- However, 20-30% of NAFLD-HCC develop in patients without cirrhosis.
 However, the absolute risk is low in the subgroup without cirrhosis
- Diabetes had the strongest association with HCC; these patients may be important targets for secondary prevention
- Several gaps exist in the NAFLD-HCC care continuum. The early steps in the continuum serve as important, high-yield targets for research

NAFLD and Risk of HCC Based on Cohort Studies

Reference	Country	NAFLD (N)	Cirrhosis %	HCC (N)	Mean follow up (yr)		
Clinical							
Hui	Australia	23	100	0	7		
Kojima	Japan	24	100	9	5.7		
Ratziu	France	41	100	8 (3 incident)	Max 5		
Yatsuji	Japan	68	100	21 (7 incident)	3.1		
Ekstedt	Sweden	129	3	0	13.7		
Sanyal	USA	152	100	10 (7 incident)	10		
Dam-Larsen	Copenhagen	170	0	0	20		
Ascha	USA	195	100	25	6.9		
Bhala	Multinational	247	52	6	7.1		
Soderberg	Sweden	256	7	5	8.7		
Angulo	Multinational	320	51	3	8.6		
Hashimoto	Japan	392	35	23 (11incident)	3.3		
Arase	Japan	1600	NR	10	8.2		
Kawamura	Japan	6508	NR	16	5.6		
Population base	d						
Adams ³⁶	USA	435	NR	2	7.6		
Ong ³⁷	USA	817	NR	0	8.7		

White D, Kanwal F, El-Serag HB. Clin Gastroenterol Hepatol 2012